Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:17:49.392Z Has data issue: false hasContentIssue false

Theoretical Thermal Conductivity of Porous Silicon: Nonlinear Behavior

Published online by Cambridge University Press:  15 February 2011

J. E. Lugo
Affiliation:
Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62210, Cuernavaca, Morelos, México.
J. A. de Río
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, A.p. 34, Temixco, Morelos, México.
J. Tagüeña-Martínez
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, A.p. 34, Temixco, Morelos, México.
Get access

Abstract

The use of porous silicon (PS) in fabricating optoelectronic devices is in progress. However, the performance of such applications still needs to be improved. In particular, in solar cells heat must be dissipated to avoid a decay in their efficiency and one of the properties of PS that must be evaluated is the effective thermal conductivity. It is well known that the thermal conductivity of silicon is temperature dependent. Thus we cannot use a standard effective medium approach to obtain its effective thermal response. In this work, we extend the averaging volume and surface methods [1] to consider nonlinear effects in the effective transport coefficients. We model PS as composed of c-Si cylindrical columns covered by different overlayers (i.e. a-Si or SiO2) immersed in another medium. In our model the effective thermal conductivity has an explicit dependence on the temperature gradient. We present a parametric analysis of the model, compare it with the c-Si behavior and evaluate the importance of the nonlinear contribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Lugo, J.E., del Río, J.A., Tagüeña, J. and Ochoa, J.A., Mat. Res. Soc. Symp. Proc. 358, 43 (1995).Google Scholar
[2]Fauchet, P.M., Porous Silicon: Photoluminescent Devices in Light Emission in Silicon ed. Lockwood, D., Academic Press, (in press, 1997).Google Scholar
[3]del Rio, J.A., Tagüeña, J. and Ochoa, J.A., Solid State Comm. 87, 541 (1993).Google Scholar
Tagüeña, J., del Rio, J.A. and Ochoa, J.A., Solid State Comm. 90, 411 (1994).Google Scholar
Lugo, J.E., del Rio, J.A. and Tagüeña, J., J. Appl. Phys. (in press, 1997).Google Scholar
[4]Whitaker, S., Chem. Eng. Comm. 58, 171 (1987).Google Scholar
[5]Levy, O. and Bergman, D.J., Phys. Rev. B 46, 7189 (1992).Google Scholar
[6]Lugo, J.E., del Rio, J.A. and Tag, J.üeña, Transport in Porous Media (Submitted)Google Scholar
[7]Bhandari, C.M. and Rowe, D.M., Thermal Conduction in Semiconductors, John Wiley (N.Y., 1988).Google Scholar
Wieczorek, L., Goldsmith, H.J. and Paul, G.L., Thermal Conductivity of Amorphous Films in Thermal Conductivity 20, eds. Hasselman, D.P.H. and Thomas, J.R., Plenum (N.Y., 1989) p. 235.Google Scholar
[8]Perepechko, I.I., An Introduction to Polymer Physics, Mir (Moscow, 1981) pp. 131.Google Scholar