Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T14:00:42.008Z Has data issue: false hasContentIssue false

A Theoretical Study of Ultra-Thin Films with the Wurtzite and Zinc Blende Structures

Published online by Cambridge University Press:  01 February 2011

Frederik Claeyssens
Affiliation:
[email protected], University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom, 00441179546863
Colin L. Freeman
Affiliation:
[email protected], University of Sheffield, Department of Engineering Materials, Sir Robert Hadfield Building,, Mappin Street, Sheffield, S1 3JD, United Kingdom
John H. Harding
Affiliation:
[email protected], University of Sheffield, Department of Engineering Materials, Sir Robert Hadfield Building,, Mappin Street, Sheffield, S1 3JD, United Kingdom
Neil L. Allan
Affiliation:
[email protected], University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, United Kingdom
Get access

Abstract

Results of periodic ab initio density functional theory calculations on thin films of (i) wurtzite ZnO (hexagonal) which terminate with the non-polar (1010) surface, and with the polar (0001) and (0001) surfaces (ii) zinc blende (cubic) ZnO which terminate with the non-polar (110) and with the polar (111) surfaces. Thin (less than18 layer) films of wurtzite ZnO which terminate with the polar (0001) and (0001) surfaces are found to be higher in energy than corresponding films in which these polar surfaces flatten out forming a new planar ‘graphitic’-like structure in which the Zn and O atoms are coplanar and the dipole is removed. This is the lowest energy surface for ultra-thin films. For zinc-blende ZnO a graphitic-type solution, but with a different stacking of ZnO layers, is also comparable to energy to the non-polar (110) and polar (111) solutions. Consequences for crystal growth and the stabilization of thin films and nanostructures are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Look, D.C., Mater. Sci. Eng. B 80, 383 (2001).Google Scholar
2. Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R. and Yang, P.D. Science 292, 1897 (2001).10.1126/science.1060367Google Scholar
3. Feng, X., Feng, L., Jin, M., Zhei, J., Jiang, L. and Zhu, D. J. Am. Chem. Soc. 126, 62 (2004).Google Scholar
4. Tasker, P.W. J. Phys. C 12, 4977 (1979).10.1088/0022-3719/12/22/036Google Scholar
5. Wander, A., Schedin, P., Steadman, P., Norris, A., McGrath, R., Turner, T.S., Thornton, G. and Harrison, N.M. Phys. Rev. Lett. 86, 3811 (2001).Google Scholar
6. Tusche, C., Meyerheim, H.L. and Kirschner, J. Phys. Rev. Lett. 99, 026102 (2007).Google Scholar
7. Claeyssens, F., Freeman, C. L., Allan, N. L., Sun, Y., Ashfold, M. N. R. and Harding, J. H., J. Mat. Chem. 15, 139 (2005).Google Scholar
8. Freeman, C.L., Claeyssens, F., Allan, N.L., and Harding, J.H. Phys. Rev. Lett. 96, 066102 (2006).10.1103/PhysRevLett.96.066102Google Scholar
9. Ashrafi, A. and Jagadish, C., J. Appl. Phys. 102, 071101 (2007).10.1063/1.2787957Google Scholar
10. Ashrafi, A.B.M.A., Ueta, A., Avramescu, A., Kumano, H., Suemune, I., Ok, Y.W. and Seong, T.Y., Appl. Phys. Lett. 76 550 (2000).10.1063/1.125851Google Scholar
11. Ding, Y., Wang, Z.L., Sun, T. and Qiu, J., Appl. Phys. Lett. 90, 153510 (2007).Google Scholar
12.CASTEP 4.2 academic version, licensed under the UKCP-MSI Agreement, 1999; Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
13. Perdew, J.P. and Wang, Y. Phys. Rev. B 45, 13244 (1992).Google Scholar
14. Vanderbilt, D. Phys. Rev. B 41, 7892 (1990).10.1103/PhysRevB.41.7892Google Scholar
15. Monkhorst, H.J. and Pack, J.D. Phys. Rev. B 13, 5188 (1976).Google Scholar
16. Pala, R.G.S. and Metiu, H. J. Phys. Chem. C 111 12715 (2007).Google Scholar
17. Goniakowski, J., Noguera, C. and Giordiano, L. Phys. Rev. Lett. 98, 205701 (2007).10.1103/PhysRevLett.98.205701Google Scholar
18. Kulkarni, A.J. and Zhou, M. Nanotechnology 18 435706 (2007).10.1088/0957-4484/18/43/435706Google Scholar
19. Wang, B., Nagase, S., Zhao, J. and Wang, G. Nanotechnology 18 345706 (2007).Google Scholar
20. Goniakowski, J., Noguera, C. and Giordiano, L. Phys. Rev. Lett. 93, 215702 (2007).10.1103/PhysRevLett.93.215702Google Scholar