No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
The past few years have seen considerable efforts in growth and device application of self-assembled quantum dots. However, the photoluminescence (PL) linewidth, which represents structural fluctuations in dot sizes, is still in the range of 30-50 meV. This large linewidth has deleterious effects on devices such as lasers based on self-assembled dots. In this paper we will examine the configuration-energy diagram of self-assembled dots. Our formalism is based on: (1) an atomistic Monte Carlo method which allows us to find the minimum energy configuration and strain tensors as well as intermediate configurations of dots; (2) an 8-band k p method to calculate the electronic spectra. We present results on the strain energy per unit cell for various distributions of InAs/GaAs quantum dots and relate them to published experimental results. In particular we examine uncovered InAs/GaAs dots and show that in the uncovered state a well-defined minimum exists in the configuration energy plot. The minimum corresponds to the size that agrees well with experiments.