Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T21:55:56.309Z Has data issue: false hasContentIssue false

Theoretical Study of Si-Rich Transition-Metal Silicides with Double-Graphene-Like Structures

Published online by Cambridge University Press:  01 February 2011

Takehide Miyazaki
Affiliation:
[email protected], AIST, RICS, Umezono 1-1-1, Tsukuba, 305-8568, Japan
Toshihiko Kanayama
Affiliation:
[email protected], National Institute for Advanced Industrial Science and Technology, Advanced Semiconductor Research Center, AIST Tsukuba West 7,, Onogawa 16-1, Tsukuba, 305-8569, Japan
Get access

Abstract

We propose a novel form of graphene-like Si nanostructure based on ab initio total-energy calculation and geometry optimization, (MSi12)n, with M being transition metal atom. It has a three-layer structure, where the two layers of Si atoms in graphene-like positions sandwich another layer of transition metal atoms. The electronic structure may become semiconducting or metallic, depending on the choice of M and arrangement of Si atoms. This hypothetical material can be regarded as a Si-rich phase of transition metal silicide. A potential impact of our finding in forthcoming ultra-scaled Si technology is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Horiuchi, S., Gotou, T., Fujiwara, M., Asaka, T., Yokosawa, T. and Matsui, Y., Appl. Phys. Lett. 84, 2403 (2004).Google Scholar
2. Li, J.-L., Kudin, K. N., McAllister, M. J., Prud'homme, R. K., Aksay, I. A., and Car, R., Phys. Rev. Lett. 96, 176101-1 (2006).Google Scholar
3. Novoselov, K. S., Geimm, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).Google Scholar
4. Novoselov, K. S., Geimm, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Nature 438, 197 (2005).10.1038/nature04233Google Scholar
5. Yin, M. T. and Cohen, M. L., Phys. Rev. B29, 6996 (1984).Google Scholar
6. Takeda, K. and Shiraishi, K., Phys. Rev. B50, 14916 (1994).Google Scholar
7. Wang, Y.-C. and Sheerschmidt, K. and Gosele, U., Phys. Rev. B61, 12864 (2000).Google Scholar
8. Durgun, E., Tongay, S. and Ciraci, S., Phys. Rev. B72, 075420 (2005).Google Scholar
9. Miyamoto, Y. and Yu, B. D., Appl. Phys. Lett. 80, 586 (2002).Google Scholar
10. Freeman, C. L., Claeyssens, F., Allan, N. L. and Harding, J. H., Phys. Rev. Lett. 96, 066102 (2006).Google Scholar
11. We used the STATE (Simulation Tools for Atom Technology) code. See, for example, Morikawa, Y., Ishii, H., and Seki, K., Phys. Rev. B69 041403 (R) (2004).Google Scholar
12. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).10.1103/PhysRev.136.B864Google Scholar
13. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).Google Scholar
14. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
15. Vanderbilt, D., Phys. Rev. B41, 7892 (1990).10.1103/PhysRevB.41.7892Google Scholar
16. Laasonen, K., Pasquarello, A., Car, R., Lee, C. and Vanderbilt, D., Phys. Rev. B47, 10142 (1993).10.1103/PhysRevB.47.10142Google Scholar
17. Troullier, N. and Martins, J. L., Phys. Rev. B43, 1993 (1991).Google Scholar
18. Hiura, H., Miyazaki, T. and Kanayama, T., Phys. Rev. Lett. 86, 1733 (2001).Google Scholar
19. Miyazaki, T. and Kanayama, T., Jpn. J. Appl. Phys. Pt. 2, in press.Google Scholar
20. International Technology Roadmap for Semiconductors, SIA, EECA, EIAJ, KSIA, TSIA, 2005.Google Scholar