Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:58:48.891Z Has data issue: false hasContentIssue false

Theoretical study of protactinium at high pressure

Published online by Cambridge University Press:  26 February 2011

Börje Johansson
Affiliation:
[email protected], Royal Institute of Technology, Applied Materials Physics, Sweden
Sa Li
Affiliation:
Eyvaz Eyvaz
Affiliation:
Rajeev Ahuja
Affiliation:
Get access

Abstract

We have studied the crystal structure of Pa metal under high pressure by means of first-principles calculations based on the density functional theory (DFT) using the generalized gradient approximation (GGA). The body centered tetragonal (bct) to orthorhombic (α-U) phase transition was calculated to take place at 29 GPa and with a volume change of 1.3%. The calculated c/a for the bct phase reaches the ideal c/a value (0.816) at around 50 GPa. A bulk modulus of 113 GPa was derived from a Murnaghan equation of state (EOS) fitting procedure. Our results are in general good agreement with recent experiment performed by Haire et al. [Phys. Rev. B 67, 134101 (2003)]. We have also calculated the phonon spectrum for fcc, bct and bcc Pa. The latter gives imaginary frequencies showing the low temperature instability of this crystallographic phase for Pa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Skriver, H. L., Andersen, O. K., and Johansson, B., Phys. Rev. Lett. 41, 000042 (1978).Google Scholar
2 Skriver, H. L., Andersen, O. K., and Johansson, B., Phys. Rev. Lett. 44, 1230 (1980).Google Scholar
3 Johansson, B., Fast, L., Soderlind, P., and Eriksson, O., Physica B 190, 12 (1993).Google Scholar
4 Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Meresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).Google Scholar
5 Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Idiri, M., Normile, P., Li, S., Ahuja, R., Johansson, B., and Lander, G. H., Science 309, 110 (2005).Google Scholar
6 Fowler, R. D., Matthias, B. T., Asprey, L. B., Hill, H. H., Lindsay, J. D. G., Olsen, C. E., and White, R. W., Phys. Rev. Lett. 15, 860 (1965).Google Scholar
7 Smith, J. L., Spirlet, J. C., and Muller, W., Science 205, 188 (1979).Google Scholar
8 Hill, H. H., Physica 55, 186 (1971).Google Scholar
9 Johansson, B., Phys. Rev. B 11, 1740 (1975).Google Scholar
10 Benedict, U., Spirlet, J. C., Dufour, C., Birkel, I., Holzapfel, W. B., and Peterson, J. R., J. Magn. Magn. Mater. 29, 287 (1982).Google Scholar
11 Eriksson, O., Soderlind, P., Wills, J. M., and Boring, A. M., Physica B 190, 5 (1993).Google Scholar
12 Eriksson, O., Soderlind, P., and Wills, J. M., Phys. Rev. B 45, 12588 (1992).Google Scholar
13 Soderlind, P. and Eriksson, O., Phys. Rev. B 56, 10719 (1997).Google Scholar
14 Haire, R. G., Heathman, S., Idiri, M., Bihan, Le, Lindbaum, T., and Rebizant, A., J., Phys. Rev. B 67 (2003).Google Scholar
15 Penicaud, M., J. Phys.: Condens. Matter. 12, 5819 (2000).Google Scholar
16 Richard, N., Bernard, S., Jollet, F., and Torrent, M., Phys. Rev. B 66, 235112 (2002).Google Scholar
17 Jones, M. D., Boettger, J. C., Albers, R. C., and Singh, D. J., Phys. Rev. B 61, 4644 (2000).Google Scholar
18 Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
19 Wills, J. M. and Cooper, B. R., Phys. Rev. B 36, 3809 (1987).Google Scholar
20 Price, D. L. and Cooper, B. R., Phys. Rev. B 39, 4945 (1989).Google Scholar
21 Chadi, D. J. and Cohen, M. L., Phys. Rev. B 8, 5747 (1973).Google Scholar
22 Zein, N. E., Sov.Phys.Solid State 26, 1825 (1984).Google Scholar
23 Baroni, S., Gironcoli, S. D., Corso, A. D., and Giannozzi, P., Rev. Mod. Phys. 73, 515 (2001).Google Scholar
24 Baroni, S., Gironcoli, S. D., Corso, A. D., and Giannozzi, P., http://www.democritos.org.Google Scholar
25 Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
26 Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
27 Marzari, N., Vanderbilt, D., Vita, A. D., and Payne, M. C., Phys. Rev. Lett. 82, 3296 (1999).Google Scholar
28 Soderlind, P., Eriksson, O., Johansson, B., and Wills, J. M., Phys. Rev. B 50, 7291 (1994).Google Scholar
29 We used notations for high symmetry points adopted in textbook of Bradley, C.J., and Cracknell, A.P., The mathematical theory of symmetry in solids, Representation theory for point groups and space groups, Clarendon Press, Oxford (1972). Besides, for bcc lattice kz=1, and for bct lattice kz=1/(c/a) in unit of 2π/a.Google Scholar