Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:34:42.633Z Has data issue: false hasContentIssue false

Theoretical Study of High Pressure Metallic Hydrogen

Published online by Cambridge University Press:  16 February 2011

Troy W. Barbee III
Affiliation:
Department of Physics, University of California at Berkeley, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Alberto García
Affiliation:
Department of Physics, University of California at Berkeley, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Marvin L. Cohen
Affiliation:
Department of Physics, University of California at Berkeley, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
Get access

Abstract

A study of the zero temperature phase transitions in hydrogen under megabar pressures using a first-principles total-energy method is presented. An anisotropic primitive hexagonal phase is found to be particularly stable relative to other monatomic phases for pressures between 4 and 8 megabars. Calculations of the vibrational frequencies show that this phase is unstable with respect to a distortion tripling the unit cell along the c-axis. Results for this distorted hexagonal phase will be presented, including a calculation of its superconducting transition temperature Tc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wigner, E. and Huntington, H. B., J. Chem. Phys. 3, 764 (1935).Google Scholar
[2] Ashcroft, N. W., Phys. Rev. Lett. 21, 1748 (1968).Google Scholar
[3] Chakravarty, S., Rose, J. H., Wood, D., Ashcroft, N. W., Phys. Rev. B 24, 1624 (1981).Google Scholar
[4] Min, B. I., Jansen, H. J. F., Freeman, A. J., Phys. Rev. B 30, 5076 (1984).Google Scholar
[5] Min, B. I., Jansen, H. J. F., Freeman, A. J., Phys. Rev. B 33, 6383 (1986).Google Scholar
[6] Barbee, T. W. III, Garcia, A., Cohen, M. L., Martins, J. L., Phys. Rev. Lett. 62, 1150 (1989).Google Scholar
[7] Mao, H. K. and Hemley, R. J., Science 244, 1462 (1989).Google Scholar
[8] Cohen, M. L., Physica Scripta T1, 5 (1982).Google Scholar
[9] Murnaghan, F. D., Proc. Nat. Acad. Sci. U.S.A. 30, 244 (1944).Google Scholar
[10] Birch, F., J. Geophys. Res. 57, 227 (1952).Google Scholar
[11] Lam, P. K., Dacorogna, M. M., Cohen, M. L., Phys. Rev. B 34, 5065 (1986).Google Scholar
[12] Dacorogna, M. M., Chang, K. J., Cohen, M. L., Phys. Rev. B 32, 1853 (1985).Google Scholar
[13] Chang, K. J., Dacorogna, M. M., Cohen, M. L., Mignot, J., Chouteau, G., Martinez, G., Phys. Rev. Lett. 54, 2375 (1985).Google Scholar
[14] Cohen, M. L. and Anderson, P. W., in Superconductivity in d- and f-band Metals, edited by Douglass, D. H. (American Institute of Physics, New York, 1972), p. 17.Google Scholar
[15] McMillan, W. L., Phys. Rev. 167, 331 (1968).Google Scholar
[16] Allen, P. B. and Dynes, R. C., Phys. Rev. B 12, 905 (1975).Google Scholar
[17] Eliashberg, G. M., Zh. Eksp. Teor. Fiz. 38, 966 (1960) [Soy. Phys. JETP 11, 696 (1960)].Google Scholar
[18] Barbee, T. W. III, Garcia, A., Cohen, M. L., Nature 340, 369 (1989).Google Scholar
[19] Allender, D., Bray, J., Bardeen, J., Phys. Rev. B 7, 1020 (1973).Google Scholar