No CrossRef data available.
Published online by Cambridge University Press: 16 February 2011
A study of the zero temperature phase transitions in hydrogen under megabar pressures using a first-principles total-energy method is presented. An anisotropic primitive hexagonal phase is found to be particularly stable relative to other monatomic phases for pressures between 4 and 8 megabars. Calculations of the vibrational frequencies show that this phase is unstable with respect to a distortion tripling the unit cell along the c-axis. Results for this distorted hexagonal phase will be presented, including a calculation of its superconducting transition temperature Tc.