Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T13:02:28.084Z Has data issue: false hasContentIssue false

Theoretical studies of single magnetic impurities on the surface of semiconductors and topological insulators

Published online by Cambridge University Press:  07 October 2013

M. R. Mahani
Affiliation:
Department of Physics and Electrical Engineering, Linnaeus University, Norra vägen 49, 391 82, Kalmar, Sweden.
A. Pertsova
Affiliation:
Department of Physics and Electrical Engineering, Linnaeus University, Norra vägen 49, 391 82, Kalmar, Sweden.
C.M. Canali
Affiliation:
Department of Physics and Electrical Engineering, Linnaeus University, Norra vägen 49, 391 82, Kalmar, Sweden.
M. F. Islam
Affiliation:
Department of Physics and Electrical Engineering, Linnaeus University, Norra vägen 49, 391 82, Kalmar, Sweden.
A.H. MacDonald
Affiliation:
Department of Physics, University of Texas at Austin, U.S.A.
Get access

Abstract

We present results of theoretical studies of transition metal dopants in GaAs, based on microscopic tight-binding model and ab-initio calculations. We focus in particular on how the vicinity of surface affects the properties of the hole-acceptor state, its magnetic anisotropy and its magnetic coupling to the magnetic dopant. In agreement with STM experiments, Mn substitutional dopants on the (110) GaAs surface give rise to a deep acceptor state, whose wavefunction is localized around the Mn center. We discuss a refinement of the theory that introduces explicitly the d-levels for the TM dopant. The explicit inclusion of d-levels is particularly important for addressing recent STM experiments on substitutional Fe in GaAs. In the second part of the paper we discuss an analogous investigation of single dopants in Bi2Se3 three-dimensional topological insulators, focusing in particular on how substitutional impurities positioned on the surface affect the electronic structure in the gap. We present explicit results for BiSe antisite defects and compare with STM experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koenraad, P. M. and Flatté, M.E., Nat. Mater. 10, 91 (2011).CrossRefGoogle Scholar
Awschalom, D.D., Samarth, N. and Loss, D., eds., Semiconductor Spintronics and quantum computation, Springer-Verlag, Berlin (2002).CrossRefGoogle Scholar
Awschalom, D.D. and Flatté, M.E., Nat. Phys. 3, 153 (2007).CrossRefGoogle Scholar
Loss, D. and DiVincenzo, D.P. Phys. Rev. A 57, 120 (1998).CrossRefGoogle Scholar
Yakunin, A. M. et al. ., Phys. Rev. Lett. 92, 216806 (2004).CrossRefGoogle Scholar
Kitchen, D. et al. ., Nature 442, 436 (2006).CrossRefGoogle Scholar
Hasan, M. Z. and Kane, C. L., Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
Qi, X.-L. and Zhang, S.-C., Rev. Mod. Phys. 83, 1057 (2011).CrossRefGoogle Scholar
Zhang, H. et al. ., Nature Physics 5, 438 (2009).CrossRefGoogle Scholar
Xia, Y. et al. , Nature Physics 5, 398 (2009).CrossRefGoogle Scholar
Tang, J.-M. and Flatté, M.E., Phys. Rev. B 72, 161315 (2005).CrossRefGoogle Scholar
Strandberg, T.O., Canali, C.M. and MacDonald, A.H.., Phys. Rev. B 80, 024425 (2009).CrossRefGoogle Scholar
Islam, M. F. and Canali, C.M., Phys. Rev. B 85, 155306 (2012).CrossRefGoogle Scholar
Jancu, J.-M. et al. ., Phys. Rev. B 57, 6493 (1998).CrossRefGoogle Scholar
Malguth, E. et al. ., Phys. Status Solidi B 245, 455 (2008).CrossRefGoogle Scholar
Richardella, A. et al. ., Phys. Rev. B 80, 045318 (2009).CrossRefGoogle Scholar
Bocquel, J. et al. ., Phys. Rev. B 87 075421 (2013).CrossRefGoogle Scholar
Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D., and Luitz, J., WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal properties (Vienna University of Technology, Austria) (2001).Google Scholar
Wray, L. A. et al. ., Nature Physics 7, 21 (2011).CrossRefGoogle Scholar
Liu, Q., Liu, C. X., Xu, C., Qi, X. L., and Zhang, S.-C., Phys. Rev. Lett. 102, 156603 (2009).CrossRefGoogle Scholar
Beidenkopf, H. et al. ., Nature Physics 7, 939 (2011).CrossRefGoogle Scholar
Zhang, D. et al. , Phys. Rev. B 86, 205127 (2012).CrossRefGoogle Scholar
Zhang, J.-M, Zhu, W., Zhang, Y., Xiao, D., and Yao, Y., Phys. Rev. Lett. 109, 266405 (2012).CrossRefGoogle Scholar
Hor, Y. S. et al. ., Phys. Rev. B 81, 195203 (2010).CrossRefGoogle Scholar
Misra, S. K., Satpathy, S., and Jepsen, O., J. Phys.: Condens. Matter 9, 461 (1997).Google Scholar
Kobayashi, K., Phys. Rev. B 84, 205424 (2011).CrossRefGoogle Scholar
Zhang, Y. et al. ., Nature Physics 6, 584 (2010).CrossRefGoogle Scholar
Chang, J., Register, L. F., and Banerjee, S. K., J. Appl. Phys. 112, 124511 (2012).CrossRefGoogle Scholar
Zhang, W., Yu, R., Zhang, H.-J., Dai, X., and Fang, Z., New. J. Phys. 12, 065013 (2010).CrossRefGoogle Scholar
Urazhdin, S., Bilc, D., Tessmer, S.H., and Mahanti, S. D., Phys. Rev. B 66, 161306(R) (2002).CrossRefGoogle Scholar