Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:31:32.419Z Has data issue: false hasContentIssue false

Theoretical Studies of Hydrogen and Water Adsorption on Actinide Oxide Surfaces

Published online by Cambridge University Press:  26 February 2011

P. Jeffrey Hay*
Affiliation:
[email protected], Los Alamos National Laboratory, Theoretical Division, Mail Stop B268, Los Alamos, NM, 87545, United States, 505-667-3663
Get access

Abstract

The adsorption of H2O on UO2 and PuO2 surfaces is studied using density functional theoretical approaches. Periodic slab models are employed to represent the oxide surface in which five layers of the oxide are explicitly treated. For both oxides the dihydroxyl form corresponding to dissociated H2O is more stable than the molecularly adsorbed H2O on the (111) and (110) surfaces. Adsorption of H2 on PuO2 and Pu2O3 is also investigated where stable forms corresponding to dissociated H atoms are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hedhili, M. N., Yakshinskiy, B. V. and Madey, T. E., Surf. Sci. 445, 512 (2000)10.1016/S0039-6028(99)01117-6Google Scholar
2. Senanayake, S. D. and Idriss, H., Surf. Sci. 563, 135 (2004).10.1016/j.susc.2004.06.169Google Scholar
3. Stultz, J., Paffett, M. T., and Joyce, S. A., J. Phys. Chem. B 108, 2362 (2004)10.1021/jp031066uGoogle Scholar
4. Haschke, J. M. and Ricketts, T. E., J. Alloys Compd. 252, 148 (1997).Google Scholar
5. Paffett, M. T., Kelly, D., Joyce, S.A., Morris, J. and Veirs, K., J. Nucl. Mat. 322, 45 (2003).10.1016/S0022-3115(03)00315-5Google Scholar
6. Abramowski, M., Redfern, S. E., Grimes, R. W., and Owens, S. Surf. Sci. 490, 415 (2001)10.1016/S0039-6028(01)01368-1Google Scholar
7. Wu, X. and Ray, A. K., Phys Rev. B, 65, 085403 (2002).Google Scholar
8. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); ibid, 49, 14251 (1994).10.1103/PhysRevB.47.558Google Scholar
9. Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).10.1103/PhysRevB.50.17953Google Scholar
10. Kudin, K. N., Scuseria, G. E. and Martin, R. L., Phys. Rev. Lett. 89, 266402 (2002)10.1103/PhysRevLett.89.266402Google Scholar
11. Wang, J., Fan, C. Y., Sun, Q., Reuter, K., Jacobi, K., Scheffler, M. and Ertl, G., Angew. Chem. Int. Ed. 42, 2151 (2003)10.1002/anie.200250659Google Scholar
12. Rodriguez, J. A., Hanson, J. C., Frenke, A. I.,. Kim, J. Y. and Perez, M., J. Am. Chem. Soc. 124, 346 (2002)Google Scholar
13. Nakatsuji, H., Hada, M., Ogawa, H., Nagata, K. and Domen, K., J. Phys. Chem. 98, 11840 (1994)Google Scholar
14. Butterfield, M. T., Durakiewicz, T., Guziewicz, E., Joyce, J. J., Arko, A. J., Graham, K. S., Moore, E. P. and Morales, L. A., Surf. Sci. 571, 74 (2004).10.1016/j.susc.2004.07.054Google Scholar