Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:33:50.113Z Has data issue: false hasContentIssue false

Theoretical Predictions for Side-Chain Liquid-Crystal Polymers and Comparison to Experiment

Published online by Cambridge University Press:  26 February 2011

F. Dowell*
Affiliation:
Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, NM 87545
Get access

Abstract

This paper presents results from a unique microscopic molecular theory for side-chain liquid-crystalline polymers (LCPs) in the nematic (N) and multiple smectic-A (SA) LC phases and the isotropic (I) liquid phase. There are no ad hoc or arbitrarily adjustable parameters in this theory. The agreement between the theoretical and experimental values for various properties (including transition temperatures and quadratic characteristic radii) is very good (relative deviations between 0% and less than 6.2%). The theoretical results also show--for the first time--that the N and I phases for these LCPs involve the packing of plate-like sections of backbones and side chains and that the local bilayer SA phase involves packing of side-chains within a plate-like section. This type of packing is predicted to be typical for side-chain LCPs. This theory can predict-- for the first time--whether the side chains of a molecule pack on the same or alternating opposite sides of the backbone and whether side chains on different molecules interdigitate (overlap) with each other.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dowell, F., companion paper in this same Proceedings volume.Google Scholar
2. Sutton, L. E., et. al. (eds.), Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956-1959, Special Publication No. 18 (Chemical Society, London, 1965), pp. S3s–S23s.Google Scholar
3. Kitaigorodskii, A. I., Organic Chemical Crystallography (Consultants Bureau, New York, 1961), p. 181.Google Scholar
4. Flory, P. J., Statistical Mechanics of Chain Molecules (Interscience, New York, 1969), Chaps. 3 and 5.Google Scholar
5. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquids (Wiley, New York, 1964), pp. 1110-1113 and 12121215.Google Scholar
6. Zahlenwerte, Landolt-Bornstein und Physik, Functionen aus, Chemie, Astronomie, Geophysik, und Technik, I. Band Atom- und Molekularphysik, 3. Teil Molekeln II (Elektronenhulle), edited by Eucken, A. and Hellwege, K. H. (Springer-Verlag, Berlin, 1951), (a) pp. 506-508, (b) pp. 509-517.Google Scholar
7. McClellan, A. L., Tables of Experimental Dipole Moments (W. H. Freeman, San Francisco, 1963).Google Scholar
8. Pimental, G. C. and McClellan, A. L., The Hydrogen Bond (W. H. Freeman, San Francisco, 1960).Google Scholar
9. Davidson, P., Keller, P., and Levelut, A. M., J. Physique 46, 939 (1985).CrossRefGoogle Scholar
10. Keller, P. et al. , J. Physique Lett. 46, L1065 (1985).Google Scholar
11. Hardouin, F. et al. , Mol. Cryst. Liq. Cryst. 155, 389 (1988).Google Scholar
12. Moussa, F. et al. , J. Physique 48, 1079 (1987).Google Scholar
13. Alexander, L. E., X-Ray Diffraction Methods in Polymer Science (Robert Krieger Publishing Co., Huntington, NY, 1979), p. 301.Google Scholar