Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:57:08.335Z Has data issue: false hasContentIssue false

Theoretical investigation of Er-O co-doping in hexagonal GaN

Published online by Cambridge University Press:  07 July 2011

Simone Sanna
Affiliation:
Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Straße 100, 33098 Germany.
Uwe Gerstmann
Affiliation:
Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Straße 100, 33098 Germany.
Wolf Gero Schmidt
Affiliation:
Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Straße 100, 33098 Germany.
Get access

Abstract

The co-doping of hexagonal GaN with Er and O is investigated by means of density functional calculations. Predominantly Er-O defect-pairs characterized by a binding energy around 0.5 eV are formed. Different geometric configurations with various orientations (i.e. axial and basal pairs with C3v or C1h symmetry) are expected with similar formation energies. Independent of the particular configuration, the presence of oxygen does not deeply affect the atomic structure and the electronic charge distribution around the Er centers. The relatively high binding energy suggests that Er-O pairs should survive thermal treatment. An investigation of the binding energy per bond indicates that on the other hand Er-Ox complexes (x=2,3,4) are not likely to be formed (differently from Er-O co-doped Si). Rather, as long as the oxygen fluence does not overtake the Er fluence, different oxygen ions will be bound to different Er-centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, D.S. and Steckl, A.J., Appl. Phys. Lett. 81, 2331 (2002).Google Scholar
2. Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, O’Donnell, K.P. and Dierolf, V. editors (Springer, Dordrecht, 2010).Google Scholar
3. Roqan, I.S., O’Donnell, K.P., Martin, R.W., Edwards, P.R., Song, S.F., Vantomme, A., Lorenz, K., Alves, E. and Bockowski, M., Phys. Rev. B 81, 085209 (2010).Google Scholar
4. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M. and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
5. Nishikawa, A., Kawasaki, T., Furukawa, N., Terai, Y., and Fujiwara, Y., Appl. Phys. Lett. 97, 051113 (2010).Google Scholar
6. Yoshida, M., Hiraka, K., Ohta, H., Fujiwara, Y., Koizumi, A. and Takeda, Y., J. Appl. Phys. 96, 4189 (2004); 97, 023909(2005).Google Scholar
7. Fujisawa, M., Asakura, A., Elmasry, F., Okubo, S., Ohta, H. and Fujiwara, Y., J. Appl. Phys. 109, 053910 (2011).Google Scholar
8. Favennec, P.N., Haridon, H. L’, Moutonnet, D., Salvi, M. and Gauneau, M., Jpn. J. Appl. Phys., Part 2 29, L524 (1990).Google Scholar
9. Torvik, J.T., Qiu, C.H., Feuerstein, R.J., Pankove, J.I. and Namvar, F., Appl. Phys. Lett. 69, 2098 (1996);J. Appl. Phys. 81, 6343(1997).Google Scholar
10. Qiu, C.H., Leksono, M.W., Pankove, J.I., Torvik, J.T., Feuerstein, R.J. and Namvar, F., Appl. Phys. Lett. 66, 562 (1995).Google Scholar
11. Citrin, P.H., Northrup, P.A., Birkhahn, R. and Steckl, A.J., Appl. Phys. Lett. 76, 2865 (2000).Google Scholar
12. Alves, E., Monteiro, T., Soares, J., Santos, L., da Silva, M.F., Soares, J.C., Lojkowski, W., Kolesnikov, D., Vianden, R. and Correia, J.G., Mat. Sci. Engin. B81, 132 (2001).Google Scholar
13. Monteiro, T., Soares, J., Correia, M.R. and Alves, E., J. Appl. Phys. 89, 6183 (2001).Google Scholar
14. Zavada, J.M., Thaik, M., Hömmerich, U., McKenzie, J.D., Abernathy, C.R., Pearton, S.J. and Wilson, R.G., J. Alloys and Compounds 300-301, 207 (2000).Google Scholar
15. Zavada, J.M., Ellis, C.J., Lin, J.Y., Jiang, H.X., Seo, J.T., Hömmerich, U., Thaik, M., Wilson, R.G., Grundowski, P.A. and Dupuis, R.D., Mat. Sci. Engin. B81, 127 (2001).Google Scholar
16. Filhol, J.-S., Jones, R., Shaw, J. M. and Briddon, P.R., Appl. Phys. Lett. 84, 2841 (2004).Google Scholar
17. Takahei, K., Taguchi, A., Horikoshi, Y. and Nakata, J., J. Appl. Phys. 76, 4332 (1994).Google Scholar
18. Ishiama, T., Katayama, E., Murakami, K., Takahei, K. and Taguchi, A., J. Appl. Phys. 84, 6782 (1998).Google Scholar
19. Sema, R., Lohmeier, M., Zagwijn, P.M. and Polman, A., Appl. Phys. Lett. 66, 1385 (1995).Google Scholar
20. Raffa, A.G. and Ballone, P., Phys. Rev. B 65, 121309(R) (2002).Google Scholar
21. Kresse, G., Furthmüller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
22. Perdew, J.P., Wang, Y., Phys. Rev. B 33, 8800 (1986).Google Scholar
23. Blöchl, P.E., Phys. Rev. B 50, 17953 (1994).Google Scholar
24. Sanna, S., Schmidt, W.G., Frauenheim, Th. and Gerstmann, U., Phys. Rev. B 80, 104120 (2009).Google Scholar
25. Sanna, S., Hourahine, B., Frauenheim, Th. and Gerstmann, U., Phys. Stat. Sol (c) 5, 2358 (2008).Google Scholar
26. de Vries, B., Matias, V., Vantomme, A., Wahl, U., Rita, E.M.C., Alves, E., Lopes, A.M.L. and Correia, J.G., App. Phys. Lett. 84, 4304 (2004).Google Scholar
27. Vries, B. de, Lattice site location of impurities in group III nitrides using emission channeling, Ph.D thesis, University of Leuven(2006).Google Scholar
28. Jones, R., Opt. Mat. 28, 718 (2006) and references therein.Google Scholar
29. Van de Walle, C.G. and Neugebauer, J., J. Appl. Phys. 95, 3851 (2004).Google Scholar