Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T11:05:34.384Z Has data issue: false hasContentIssue false

Theoretical Evaluation of Oxidation Rate of Zr

Published online by Cambridge University Press:  05 April 2013

Yasunori Yamamoto
Affiliation:
Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011, Japan.
Kazunori Morishita
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan.
Hirotomo Iwakiri
Affiliation:
Faculty of Education, University of the Ryukyus, Nakagami-gun, Okinawa 903-0212, Japan.
Yasunori Kaneta
Affiliation:
Akita National College of Technology, Akita, Akita 011-8511, Japan.
Get access

Abstract

First principle calculations were performed to evaluate stress effect on the diffusion process of oxygen vacancy in ZrO2 film, and oxidation rate of Zr was evaluated by solving simple diffusion equations. Our calculation results have indicated that both the vacancy formation and migration energies of ZrO2 increase with increasing compressive applied stress. The energy increase causes a decrease in the diffusion coefficient of oxygen vacancy in ZrO2, leading to a decrease in oxidation rate of Zr. The stress effect on diffusion process may explain the experimental fact that Zr is oxidized in proportion to the cubic root of time.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hillner, E., ASTM STP, 663 (1977) 211.Google Scholar
Godlewski, J., Tenth International Symposium ASTM STP, 1245 (1994) 663.Google Scholar
Beie, H. J., Mitwalski, A., Garzarolli, F., Ruhman, H., Sell, H. J., Tenth International Symposium ASTM STP, 1245 (1994) 615.Google Scholar
Soler, J. M., Artacho, E., Gale, J. D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D., J. Phys.: Condens. Matter, 14 (2002) 2745.Google Scholar
Troullier, N., Martins, J. L. Phys. Rev. B, 43 (1991) 1993.CrossRefGoogle Scholar
Kleinman, L., Bylander, D. M., Phys. Rev. Lett., 48 (1982) 1425.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77 (1996) 3865.CrossRefGoogle Scholar
Park, J. Y., Kim, H. G., Jeong, Y. H., Jung, Y. H., J. Nucl. Mater., 335 (2004) 433.Google Scholar
Yamamoto, Y., Morishita, K., Iwakiri, H., Kaneta, Y., Nuclear Instruments and Methods in Physics Research, (to be published).Google Scholar
Bradhurst, D. H., Heuer, P. M., J. Nucl. Mater., 37 (1970) 35.CrossRefGoogle Scholar