Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:51:32.802Z Has data issue: false hasContentIssue false

Theoretical energy yield of GaAs-on-Si tandem solar cells

Published online by Cambridge University Press:  13 February 2014

Haohui Liu
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, Singapore (117574) NUS Graduate School for Integrative Sciences & Engineering (NGS), 28 Medical Drive, Singapore (117456)
Zekun Ren
Affiliation:
Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way, Singapore (138602)
Zhe Liu
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, Singapore (117574)
Riley E. Brandt
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
Jonathan P. Mailoa
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
Sin Cheng Siah
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
Armin G. Aberle
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, Singapore (117574)
Tonio Buonassisi
Affiliation:
Singapore-MIT Alliance for Research and Technology (SMART), 1 CREATE Way, Singapore (138602) Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A
Ian Marius Peters
Affiliation:
Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, 7 Engineering Drive 1, Singapore (117574)
Get access

Abstract

III-V on Si multijunction solar cells represent an alternative to traditional compound III-V multijunction cells as a promising way to achieve high efficiencies. A theoretical study on the energy yield of GaAs/Si tandem solar cells is performed to assess the performance potential and sensitivity to spectral variations. Recorded time-dependent spectral irradiance data in two locations (Singapore and Denver) were used. We found that a 4-terminal contact scheme with thick top cell confers distinctive advantages over a 2-terminal scheme, giving a yield potential 21% higher than the 2-terminal scheme in Singapore and 17% higher in Denver. The theoretical energy yield benefit of a 4-terminal device emphasizes the need for further technology development in this design space.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Progress in Photovoltaics: Research and Applications 21(1), 111 (2013).CrossRefGoogle Scholar
Geisz, J. F. and Friedman, D. J., Semiconductor Science and Technology 17(8), 769 (2002).CrossRefGoogle Scholar
Grassman, T. J., Brenner, M. R., Gonzalez, M., Carlin, A. M., Unocic, R. R., Dehoff, R. R., Mills, M. J. and Ringel, S. A., Electron Devices, IEEE Transactions on 57(12), 33613369 (2010).CrossRefGoogle Scholar
Derendorf, K., Essig, S., Oliva, E., Klinger, V., Roesener, T., Philipps, S. P., Benick, J., Hermle, M., Schachtner, M., Siefer, G., Jager, W. and Dimroth, F., Photovoltaics, IEEE Journal of PP (99), 1-6 (2013).Google Scholar
Umeno, M., Kato, T., Egawa, T., Soga, T. and Jimbo, T., Sol. Energy Mater. Sol. Cells 4142(0), 395403 (1996).CrossRefGoogle Scholar
Yang, J., Peng, Z., Cheong, D. and Kleiman, R. N., presented at the 27th European Photovoltaic Solar Energy Conference and Exhibition, 2012 (unpublished).Google Scholar
Henry, C. H., J. Appl. Phys. 51(8), 44944500 (1980).CrossRefGoogle Scholar
Kurtz, S. R., Faine, P. and Olson, J. M., J. Appl. Phys. 68(4), 18901895 (1990).CrossRefGoogle Scholar
Tobías, I. and Luque, A., Progress in Photovoltaics: Research and Applications 10(5), 323329 (2002).CrossRefGoogle Scholar
Letay, G., Baur, C. and Bett, A. W., presented at the 19th European Photovoltaic Solar Energy Conference, Paris, 2004 (unpublished).Google Scholar
Ishii, T., Otani, K., Takashima, T. and Xue, Y., Progress in Photovoltaics: Research and Applications 21(4), 481489 (2013).Google Scholar
Philipps, S. P., Peharz, G., Hoheisel, R., Hornung, T., Al-Abbadi, N. M., Dimroth, F. and Bett, A. W., Sol. Energy Mater. Sol. Cells 94(5), 869877 (2010).CrossRefGoogle Scholar
Clugston, D. A. and Basore, P. A., presented at the Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE, 1997 (unpublished).Google Scholar
Tobin, S. P., Vernon, S. M., Bajgar, C., Geoffroy, L. M., Keavney, C. J., Sanfacon, M. M. and Haven, V. E., Solar Cells 24 (1–2), 103115 (1988).CrossRefGoogle Scholar
Hilali, M. M., Nakayashiki, K., Ebong, A. and Rohatgi, A., Progress in Photovoltaics: Research and Applications 14(2), 135144 (2006).CrossRefGoogle Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys. 32(3), 510519 (1961).CrossRefGoogle Scholar
Powell, D. M., Winkler, M. T., Goodrich, A. and Buonassisi, T., Photovoltaics, IEEE Journal of 3(2), 662668 (2013).CrossRefGoogle Scholar