Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T15:51:30.013Z Has data issue: false hasContentIssue false

Theoretical confirmation of Ga-stabilized anti-ferromagnetism in plutonium metal

Published online by Cambridge University Press:  01 May 2014

Per Söderlind
Affiliation:
Condensed Matter and Materials Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Alex Landa
Affiliation:
Condensed Matter and Materials Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Get access

Abstract

The density-functional-theory model for plutonium metal is shown to be consistent with recent magnetic measurements that suggest anti-ferromagnetism in Pu-Ga alloys at low temperatures. The theoretical model predicts a stabilization of the face-centered-cubic (fcc, δ) form of plutonium in an anti-ferromagnetic configuration when alloyed with gallium. The ordered magnetic phase occurs because Ga removes the mechanical instability that exists for unalloyed δ-Pu. The cause of the Ga-induced stabilization is a combination of a lowering of the band (kinetic) and electrostatic (Coulomb) energies for the cubic relative to the tetragonal phase.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkhipov, V. E., Kassan-Ogly, F. A., Korolev, A. V., Verkhovskii, S. V., Zuev, Yu. N., and Svyatov, I. L., J. Nucl. Mater. 385, 42 (2009).CrossRefGoogle Scholar
Kassan-Ogly, F. A., Korolev, A. V., Ustinov, V. V., Zuev, Yu. N., and Arkhipov, V. E., Phys. Met. Metallogr. 114, 1155 (2013).CrossRefGoogle Scholar
Méot-Reymond, S., Fournier, J. -M., J. Alloys Compd. 232, 119 (1996).CrossRefGoogle Scholar
Söderlind, P., Eriksson, O., Johansson, B., and Wills, J. M., Phys. Rev. B 50, 7291 (1994); P. Söderlind and A. Gonis, Phys. Rev. B 82, 033102(2010).CrossRefGoogle Scholar
Wills, J. M., Alouani, M., Andersson, P., Delin, A., Eriksson, O., and Grechnev, O., Full-Potential Electronic Structure Method (Springer-Verlag, Berlin, 2010).CrossRefGoogle Scholar
Söderlind, P. and Landa, Alex, J. Nucl. Mater. 448, 310 (2014).CrossRefGoogle Scholar
Solovyev, I. V., Liechtenstein, A. I., Gubanov, V. A., Antropov, V. P., and Andersen, O. K., Phys. Rev B 43, 214402 (1991).CrossRefGoogle Scholar
Söderlind, P., Europhysics Lett. 55, 525 (2001); P. Söderlind and B. Sadigh, Phys. Rev. Lett. 92, 185702(2004).CrossRefGoogle Scholar
Söderlind, P., Landa, A., and Sadigh, B., Phys. Rev. B 66, 205109 (2002); A. Landa, P. Söderlind, and A. Ruban, J. Phys.: Condens. Matter 15, L371(2003).CrossRefGoogle Scholar
Robert, G., Pasturel, A., and Siberchicot, B., J. Phys.: Condens. Matter 15, 8377 (2003).Google Scholar
Söderlind, P., Phys. Rev. B 77, 085101 (2008).CrossRefGoogle Scholar
Söderlind, P., Eriksson, O., Johansson, B., Wills, J. M., and Boring, A. M., Nature 374, 524 (1995).CrossRefGoogle Scholar
Söderlind, P., Adv. Phys. 47, 959 (1998); P. Söderlind, G. Kotliar, K. Haule, P. M. Oppeneer, and D. Guillaumont, MRS Bulletin 35, 883(2010).CrossRefGoogle Scholar