Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T19:37:25.143Z Has data issue: false hasContentIssue false

Theoretical Approach for the Development of Organic Semiconductors on the Basis of the MO Symmetry: Thienoacene as an Example

Published online by Cambridge University Press:  02 August 2012

Hirotaka Kojima
Affiliation:
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
Takehiko Mori
Affiliation:
Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
Get access

Abstract

We have explored materials for organic field-effect transistors (OFETs) from the viewpoint of theoretical calculations. The herringbone structure, which realizes two-dimensional conduction, is investigated in detail. Transfer integrals (t) are calculated systematically as a function of the dihedral angle between the molecular planes (θ) and the displacement along the molecular long axis (D). Acenes, oligothiophenes, thienoacenes and tetrathiafulvalenes are investigated, and are discussed from the molecular orbital (MO) symmetry. Thienoacenes (nTAs) are particularly examined as a candidate of OFET materials from the calculations of transfer integrals and reorganization energies (λ) based on the energy levels and the MO symmetry. LUMO of nTAs have MO symmetry suitable for conduction, but these orbitals are usually not related to the conduction. We have investigated the electronic properties of the derivatives with dicarboximide moiety. nTA-tetracarboxydiimide is expected to show the herringbone structure and exhibit n-type transport from the properties of LUMO.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ortiz, R. P., Herrera, H., Seoane, C., Segura, J. L., Facchetti, A., Marks, T. J., Chem.–Eur. J. 18, 532 (2012).Google Scholar
2. Campbell, R. B., Robertson, J. M., Trotter, J., Acta Crystallogr. 14, 705 (1961).Google Scholar
3. Desiraju, G. R., Gavezzotti, A. J., J. Chem. Soc., Chem. Commun. 621 (1989).Google Scholar
4. Desiraju, G. R., Gavezzotti, A., Acta Crystallogr., Sect. B 45, 473 (1989).Google Scholar
5. Brédas, J. L., Calbert, J. P., da Silva, D. A., Cornil, J., Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002).Google Scholar
6. Kwon, O., Coropceanu, V., Gruhn, N. E., Durivage, J. C., Laquindanum, J. G., Katz, H. E., Cornil, J., Brédas, J. L., J. Chem. Phys. 120, 8186 (2004).Google Scholar
7. Kojima, H., Mori, T., Bull. Chem. Soc. Jpn. 84, 1049 (2011).Google Scholar
8. Marcus, R., Annu. Rev. Phys. Chem. 15, 155 (1964).Google Scholar
9. Mori, T., Bull. Chem. Soc. Jpn. 71, 2509 (1998).Google Scholar
10. Frisch, M. J., et al. ., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT, 2009.Google Scholar
11. Takahashi, Y., Hasegawa, T., Horiuchi, S., Kumai, R., Tokura, Y., Saito, G., Chem. Mater. 19, 6382 (2007).Google Scholar
12. Chen, M.-C., Chiang, Y.-J., Kim, C., Guo, Y.-J., Chen, S.-Y., Liang, Y.-J., Huang, Y.-W., Hu, T.-S., Lee, G.-H., Facchetti, A., Marks, T. J., Chem. Commun. 45, 1846 (2009).Google Scholar
13. Hong, W., Yuan, H., Li, H., Yang, X., Gao, X., Zhu, D., Org. Lett. 6, 1410 (2011).Google Scholar
14. Mori, H., Okuno, T., Sakurai, N., Tanaka, S., Kajita, K., Moriyama, H., Chem. Lett. 505 (1998).Google Scholar
15. Kim, E.-G., Coropceanu, V., Gruhn, N. E., Sanchez-Carrera, R. S., Snoeberger, R., Matzger, A. J., Brédas, J.-L., J. Am. Chem. Soc. 129, 13072 (2007).Google Scholar
16. Coropceanu, V., Kwon, O., Wex, B., Kaafarani, B. R., Gruhn, N. E., Durivage, J. C., Neckers, D. C., Brédas, J.-L., Chem.–Eur. J. 12, 2073 (2006).Google Scholar
17. Deng, W.-Q., Goddard, W. A., J. Phys. Chem. B 108, 8614 (2004).Google Scholar