Article contents
Theoretical and Experimental Understanding of Charge-Injection GeTe/Sb2Te3Superlattice Phase Change Memory
Published online by Cambridge University Press: 09 June 2014
Abstract
A charge-injection GeTe/Sb2Te3 superlattice phase change memory (PCM or PRAM) has been developed as a candidate for a non-volatile memory that replaces NAND flash memory. It differs from PRAM with the conventional material of GeSbTe, and is therefore named “TRAM (topological switching random access memory)”. First principle calculations showed a resistance change in the GeTe/Sb2Te3 superlattice was enhanced by charge injection. The fabrication and analyses of a one-resistor TEG revealed that the superlattice structure was maintained after 1M endurance, which proved the occurrence of non-melting resistance change in TRAM. The reset current of TRAM was found to be less than 1/5 of that of conventional PRAM. Furthermore, TRAM enables a set -speed of 10 ns and reset -operation by DC-sweep to be achieved, which experimentally proved the atomic movement in TRAM can be enhanced by charge injection.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2014
References
REFERENCES
- 1
- Cited by