Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-17T00:08:55.970Z Has data issue: false hasContentIssue false

Theoretical and Experimental Investigations of Fullerene Derivatives: C60H2, C60H4, C70H2, AND C60(CH2)2

Published online by Cambridge University Press:  22 February 2011

S. Joshua Jacobs
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0368
Kenneth T. Gillen
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0368
Paul A. Cahill
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Craig C. Henderson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0368
Celeste M. Rohlfing
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0368
Get access

Abstract

Hydroboration of C70 in toluene yields a 2:1 mixture of 1,9-C70H2 and 7,8-C70H2. Equilibration of these two isomers in the presence of a Pt catalyst reveals a free energy difference of 1.4 ± 0.2 kcal/mol. Whereas semiempirical calculations have been found to predict the energy ordering of many fullerene derivatives incorrectly, ab initio Hartree-Fock (HF) calculations have been found to yield quantitative predictions of experiment. The HF/6-31G* level energy separation of l,9-C70H2 and 7,8-C70H2 of 1.3 kcal/mol is in excellent agreement with experiment. Relative stabilities of isomers of bis(methano)fullerenes were found to parallel those of analogous C60H4 isomers. Density functional theory (DFT) methods have been tested and are equivalent in accuracy to HF methods if similar basis sets are used. C60H2 and C60H4 can be efficiently produced on larger (≥ 50 mg) scales with diimide generated from potassium azodicarboxylate and acetic acid in o-dichlorobenzene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) For recent reviews of fullerene chemistry see: Taylor, R. and Walton, D.R.M., Nature 363, 685 (1993); A. Hirsch, Angew. Chem. Int. Ed. Engl. 32, 1138 (1993).Google Scholar
(2) Henderson, C. C. and Cahill, P. A., Science 259, 1885 (1993).Google Scholar
(3) Avent, A. G., Darwish, A. D., Heimbach, D. K., Kroto, H. W., Meidine, M. F., Parsons, J. P., Remars, C., Roers, R., Ohashi, O., Taylor, R., and Walton, D. R. M., J. Chem. Soc. Perkin Trans. 2 1994, 15.Google Scholar
(4) Ballenweg, S., Gleiter, R., and Krätschmer, W., Tetrahedron Lett. 34, 3737 (1993).Google Scholar
(5) Becker, L., Evans, T. P., and Bada, J. L., J. Org. Chem. 58, 7630 (1993).Google Scholar
(6) Shigematsu, K. and Abe, K., Chem. Express 7, 905 (1992).Google Scholar
(7) Ruichardt, C., Gerst, M., Ebenhoch, J., Beckhaus, H.-D., Campbell, E. E. B., Tellgmann, R., Schwartz, H., Weiske, T., and Pitter, S., Angew. Chem. Int. Ed. Engl. 32, 584 (1993).Google Scholar
(8) Henderson, C. C., Rohlfing, C. M., and, Cahill, P. A., Chem. Phys. Lett. 213, 383 (1993).Google Scholar
(9) Matsuzawa, N., Dixon, D. A., and Fukunaga, T., J. Phys. Chem. 96, 7594 (1992).Google Scholar
(10) For a discussion of the nomenclature used here see: Taylor, R., J. Chem. Soc. Perkin Trans. 2 1993, 813.Google Scholar
(11) Henderson, C. C., Rohlfing, C. M., Gillen, K. T., and Cahill, P. A., Science 264, 397 (1994).Google Scholar
(12) Welch, C. J. and Pirkle, W. H., J. Chromatogr. 609, 89 (1992).Google Scholar
(13) Ab initio calculations were performed with GAUSSIAN 92 DFT, rev. E3., Frisch, M. J. et al. , Gaussian, Incorporated, Pittsburgh, PA, 1992.Google Scholar
(14) Stewart, J. J. P., J. Comput. Chem. 10, 209 (1989).Google Scholar
(15) Hedberg, K., Hedber, L., Bethune, D. S., Brown, C. A., Dom, H. C., Johnson, R. D., and Vries, M. de, Science 254, 410 (1991).Google Scholar
(16) Balch, A. L., Catalano, V. J., Lee, J. W., Olmstead, M. M., and Parkin, S. R., J. Am. Chem. Soc. 113, 8953 (1991).Google Scholar
(17) McKenzie, D. R., Davis, C. A., Cockayne, D. J. H., Muller, D. A., and Vasallo, A. M., Nature 355, 622 (1992).Google Scholar
(18) Suzuki, T., Li, Q., Khemani, K. C., Wudl, F., and Almarsson, Ö., Science 254, 1186 (1991).Google Scholar
(19) Suzuki, T., Li, Q., Khemani, K. C., and Wudl, F., J. Am. Chem. Soc. 114, 7301 (1992).Google Scholar
(20) Wudl, F., Acc. Chem. Res. 25, 157 (1992).Google Scholar
(21) Suzuki, T., Li, Q., Khemani, K. C., Wudl, F., and Almarsson, Ö., J. Am. Chem. Soc. 114, 7300 (1992).Google Scholar
(22) Wudl, F., presented at the 1993 American Chemical Society Fall Meeting, Chicago, IL, 1993 (unpublished).Google Scholar
(23) Vasella, A., Uhlmann, P., Waldraff, C. A. A., Diederich, F. N., and Thilgen, C., Angew. Chem. Int. Ed. Engl. 31, 1388 (1992).Google Scholar
(24) Smith, A. B. III, Strongin, R. M., Brard, L., Furst, G. T., Romanow, W. J., Owens, K. G., and King, R. C., J. Am. Chem. Soc. 115, 5829 (1993).Google Scholar
(25) Hirsch, A., Lamparth, I., and Karfunkel, H. R., Angew. Chem. Int. Ed. Engl. 33, 437 (1994).Google Scholar
(26) Scrivens, W. A. and Tour, J. M., J. Chem. Soc. Chem. Commun. 1993, 1207.Google Scholar
(27) Ruoff, R. S., Tse, D. S., Malhotra, R., and Lorents, D. C., J. Phys. Chem. 97, 3379 (1993).Google Scholar
(28) Tamelen, E. E. van, Dewey, R. S., and Timmons, R. J., J. Am. Chem. Soc. 83, 3725 (1961); E. J. Corey, W. L. Mock, and D. J. Pasto, Tetrahedron Lett. 2, 347 (1961).Google Scholar