Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:33:11.183Z Has data issue: false hasContentIssue false

Theoretical Analysis of Faceted Void Dynamics in Metallic Thin Films Under Electromigration Conditions

Published online by Cambridge University Press:  10 February 2011

Henry S. Ho
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
M. Rauf Gungor
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
Dimitrios Maroudas*
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080
*
(a)To whom correspondence should be addressed; E-mail: [email protected]
Get access

Abstract

A theoretical analysis is presented of the electromigration-induced dynamics of transgranular voids in metallic thin films. The analysis is based on self-consistent dynamical simulations of current-driven void surface propagation coupled with the distribution of the electric field in the metallic film. The simulation predictions highlight the rich nonlinear dynamics of current-driven evolution of voids that become faceted due to the strongly anisotropic nature of surface diffusion. The numerical results are analyzed based on approximate analytical solutions to faceted void migration and a linearized theory for the morphological stability of planar void facets.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ho, P. S. and Kwok, T., Rep. Progr. Phys. 52, 301 (1989); C. V. Thompson and J. R. Lloyd, Mater. Res. Soc. Bull. 18, No. 12, 19 (1993).Google Scholar
2 Sanchez, J. E. Jr., McKnelly, L. T., and Morris, J. W. Jr., J. Electron. Mater. 19, 1213 (1990); J. Appl. Phys. 72, 3201 (1992); J. H. Rose, Appl. Phys. Lett. 61, 2170 (1992); Y.-C. Joo and C. V. Thompson (1997).Google Scholar
3 Kraft, O., Bader, S., Sanchez, J. E. Jr., and Arzt, E., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993) pp. 199204.Google Scholar
4 Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E. Jr., J. Appl. Phys. 76, 1563 (1994).Google Scholar
5 Kraft, O. andArzt, E., Acta Mater. 45, 1599 (1997).Google Scholar
6 Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); W. Yang, W. Wang, and Z. Suo, J. Mech. Phys. Solids 42, 897 (1994); W. Q. Wang, Z. Suo, and T.-H. Hao, J. Appl. Phys. 79, 2394 (1996).Google Scholar
7 Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995).Google Scholar
8 Maroudas, D., Appl. Phys. Lett. 67, 798 (1995).Google Scholar
9 Maroudas, D., Enmark, M. N., Leibig, C. M., and Pantelides, S. T., J. Comp.-Aided Mater. Des. 2, 231 (1995).Google Scholar
10 Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997).Google Scholar
11 Liu, C.-L., Cohen, J. M., Adams, J. B., and Voter, A. F., Surf. Sci. 253, 334 (1991).Google Scholar
12 Gungor, M. R. andMaroudas, D., to be published (1998).Google Scholar
13 Ho, P. S., J. Appl. Phys. 41, 64 (1970).Google Scholar
14 Schimschak, M. andKrug, J., Phys. Rev. Lett. 78, 278 (1997).Google Scholar