Published online by Cambridge University Press: 10 February 2011
A theoretical analysis is presented of the electromigration-induced dynamics of transgranular voids in metallic thin films. The analysis is based on self-consistent dynamical simulations of current-driven void surface propagation coupled with the distribution of the electric field in the metallic film. The simulation predictions highlight the rich nonlinear dynamics of current-driven evolution of voids that become faceted due to the strongly anisotropic nature of surface diffusion. The numerical results are analyzed based on approximate analytical solutions to faceted void migration and a linearized theory for the morphological stability of planar void facets.