Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-13T08:12:57.145Z Has data issue: false hasContentIssue false

Theoretical Analysis of Electromigration-Induced Failure of Metallic Thin Films

Published online by Cambridge University Press:  10 February 2011

Dimitrios Maroudas
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106–5080
M. Rauf Gungor
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106–5080
Henry S. Ho
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106–5080
Matthew N. Enmark
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA 93106–5080
Get access

Abstract

A comprehensive theoretical analysis is presented of the failure of metallic thin films due to electromigration-induced morphological evolution of transgranular voids. Fully self-consistent dynamical simulations emphasize the important effects on void dynamics of the surface diffusivity anisotropy, together with the strength of the applied electric field and the void size. The simulation results are discussed in the context of an approximate linear stability theory. Our simulations predict formation of wedge-shaped voids, as well as failure due to propagation of slit-like features emanating from void surfaces, in excellent agreement with recent experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ho, P. S. and Kwok, T., Rep. Progr. Phys. 52, 301 (1989); C. V. Thompson and J. R. Lloyd, Mater. Res. Soc. Bull. 18, No.12, 19 (1993).Google Scholar
2.Rose, J. H., Appl. Phys. Lett. 61, 2170 (1992); J. E. Sanchez, Jr., L. T. McKnelly, and J. W. Morris, Jr, J. Appl. Phys. 72, 3201 (1992).Google Scholar
3.Kraft, O., Bader, S., Sanchez, J. E. Jr., and Arzt, E., in Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993) pp. 199204.Google Scholar
4.Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E. Jr., J. Appl. Phys. 76, 1563 (1994).Google Scholar
5.Kraft, O. and Arzt, E., Acta Mater. 45, 1599 (1997).Google Scholar
6.Suo, Z., Wang, W., and Yang, M., Appl. Phys. Lett. 64, 1944 (1994); W. Q. Wang, Z. Suo, and T.-H. Hao, J. Appl. Phys. 79, 2394 (1996).Google Scholar
7.Kraft, O. and Arzt, E., Appl. Phys. Lett. 66, 2063 (1995).Google Scholar
8.Maroudas, D., Appl. Phys. Lett. 67, 798 (1995).Google Scholar
9.Maroudas, D., Enmark, M. N., Leibig, C. M., and Pantelides, S. T., J. Comp.-Aided Mater. Des. 2, 231 (1995).Google Scholar
10.Xia, L., Bower, A. F., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 45, 1473 (1997).Google Scholar
11.Liu, C.-L., Cohen, J. M., Adams, J. B., and Voter, A. F., Surf. Sci. 253, 334 (1991).Google Scholar
12.Gungor, M. R. and Maroudas, D., submitted for publication (1997).Google Scholar