Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T19:37:39.140Z Has data issue: false hasContentIssue false

Textured Pb(Zr0.54Ti0.46)O3 Thin Films with YBa2Cu3O7-δ and Yttria-Stabilized Zirconia Buffer Layers on (001)Si

Published online by Cambridge University Press:  21 February 2011

Tsvetanka Zheleva
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
P. Tiwari
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7916
Get access

Abstract

Characteristics of textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with YBa2Cu3O7-δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers have been studied using X-ray diffraction and high resolution electron microscopy techniques. Excimer KrF laser has been used for deposition of PZT, YBCO and YSZ thin films. The YBCO layer was utilized to provide a seed for PZT growth, while YSZ layer acted as a seed and a buffer layer for the growth of YBCO on (001)Si. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction were used to determine the texture and the nature of defects, interfaces and grain boundaries. Predominant orientation relationships were found to be [001]PZT//[001]YBCO; [001]YBCO//[001]YSZ; and [001]YSZ//[001]Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Okujama, M., Matsui, Y., Nakamo, H. and Hamakawa, Y., Ferroelectrics., 33, 235, (1981).Google Scholar
2. Takayama, R., Tomita, Y., Iiijima, K. and Veda, I., J. Appl. Phys., 61, 411, (1987).Google Scholar
3. Kawaguchi, T., Adachi, H., Setsune, K. and Wasa, K., Appl. Opt., 23, 2187, (1984).Google Scholar
4. Ishida, M., Matsuhami, H. and Tanaka, T., Appl.Phys. Lett., 31, 433, (1977).Google Scholar
5. Scott, J. F., Kammerdimer, L., Parris, M., Trayner, S., Ottenbacher, V., Shawabken, A. and Olivier, W. F., J. Appl. Phys., 64, 787, (1988).Google Scholar
6. Proc. Mat. Soc., Spring Meeting Symposium on Ferroelectric Thin Films, ed. by Myers, E.R. and Kingon, A. (Mat. Res. Soc., Pittsbburgh, PA, 1990).Google Scholar
7. Goo, F.K.W., Mishra, R.K. and Thomas, G., J. Appl. Phys, A, 52, 2940, (1981).Google Scholar
8. Lukuta, P.O., J. Am. Ceram. Soc., 72, 933, (1989).Google Scholar
9. Ari-Gur, P. and Benguigui, L., J. Phys. D: Appl. Phys., 8, 1856, (1975).CrossRefGoogle Scholar
10. Okada, A., J. Appl. Phys., 49, 4494, (1978).CrossRefGoogle Scholar
11. Oikawa, M. and Toda, K., Appl. Phys. Lett., 29, 491, (1976).Google Scholar
12. Kwak, B.S., Boyd, E.P. and Erbil, A., Appl. Phys. Lett., 53, 1702, (1988).Google Scholar
13. Sreenivas, K., Sayer, M. and Garret, P., Thin Solid Films, 172, 251, (1989).CrossRefGoogle Scholar
14. Tiwari, P., Zheleva, T., Narayan, J., Appl. Phys. Lett., 63, 30, (1993).Google Scholar
15. Biunno, N., Narayan, J., Sharan, S., SPIE Proceedings, 1190 (1989).Google Scholar
16. Tiwari, P., Kanetkar, S., Sharan, S., Appl. Phys. Lett, 57, 1578, (1990).Google Scholar
17. Tiwari, P., Zheleva, T., L. Narayan, Proc. TMS, Fall 1992, (accepted for publication).Google Scholar
18. Kakegawa, K., Mohri, J., Takahashi, T., Yamamura, H. and Shirasaki, S., Solid State Communications., 24, 769, (1977).Google Scholar
19. Kala, T., Phys. Stat. Sol.(a), 78 (1983).Google Scholar