Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:52:36.121Z Has data issue: false hasContentIssue false

Textural and Acidic Properties of Mixed Alumina-Silica Oxides Prepared with Commercially Available Sols

Published online by Cambridge University Press:  10 February 2011

Steven J. Monaco
Affiliation:
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213–3890.
Edmond I. Ko
Affiliation:
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213–3890.
Get access

Abstract

In this study we have used commercially available preformed sols as building blocks to systematically explore the effects of composition, particle size, and packing on the textural and acidic properties of alumina-silica. We have prepared single oxides and alumina-silica mixed oxides with varying Al:Si atomic ratios using commercial sols from Vista Chemical Co. (alumina) and Eka Chemicals, Inc. (silica). Simple particle packing models based on the structure and experimentally determined particle size distributions of the sols explain the textural and acidic properties of both the single and mixed oxides. Comparisons with aerogels prepared from alkoxides show that materials with different atomic-scale homogeneity can be obtained. This continuum of precursor sizes from monomer through colloid allows a measure of control over textural and acidic properties in the mixed oxides, even at a fixed composition. These results show that systematic studies using preformed sols add insight into the effect of preparation upon catalytic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Li, D. X.; Thomson, W. J. J. Mater. Res. 1990, 5, 1963.Google Scholar
(2) Hyatt, M. J.; Bansal, N. P. J. Mat. Sci. 1990, 25, 2815.Google Scholar
(3) Jaymes, I.; Douy, A. J. Am. Ceram. Soc. 1992, 75, 3154.Google Scholar
(4) Chu, L.; Anderson, M. A. Prepr. - Am. Chem. Soc, Div. Pet. Chem. 1995, 40, 84.Google Scholar
(5) Komarneni, S.; Rutiser, C. J. Eur. Ceram. Soc. 1996, 16, 143.Google Scholar
(6) Hoffman, D. W.; Roy, R.; Komarneni, S. J. Am. Ceram. Soc. 1984, 67, 468.Google Scholar
(7) Komarneni, S.; Suwa, Y.; Roy, R. J. Am. Ceram. Soc. 1986, 69, C155.Google Scholar
(8) Ismail, M. G. M. U.; Nakai, Z.; Somiya, S. J. Am. Ceram. Soc. 1987, 70, C7.Google Scholar
(9) Wei, W.; Halloran, J. W. J. Am. Ceram. Soc. 1988, 71, 166.Google Scholar
(10) Sonuparlak, B. Adv. Ceram. Mat. 1988, 3, 263.Google Scholar
(11) Li, D. X.; Thomson, W. J. J. Am. Ceram. Soc. 1991, 74, 2382.Google Scholar
(12) Lee, J. S.; Yu, S. C. J. Mat. Sci. 1992, 27, 5203.Google Scholar
(13) Fahrenholtz, W. G.; Smith, D. M. J. Am. Ceram. Soc. 1993, 76, 433.Google Scholar
(14) Ha, J.; Chawla, K. K. Ceram. Int. 1993, 19, 299.Google Scholar
(15) Pach, L.; Iratni, A.; Hrabe, Z.; Svetík, S., Komarneni, S. J. Mat. Sci. 1995, 30, 5490.Google Scholar
(16) Pack, L.; Iratni, A.; Kovar, V.; Mankos, P.; Komarneni, S. J. Eur. Ceram. Soc. 1996, 16, 561.Google Scholar
(17) Kara, F.; Little, J. A. J. Eur. Ceram. Soc. 1996, 16, 627.Google Scholar
(18) Sheng, G.; Chu, L.; Zeltner, W. A.; Anderson, M. A. J. Non-Cryst. Solids. 1992, 147/148, 548.Google Scholar
(19) Monaco, S. J.; Ko, E. I. Chem. Mater. Accepted for publication.Google Scholar
(20) Miller, J. B.; Tabone, E. R.; Ko, E. I. Langmuir 1996, 12, 2878.Google Scholar
(21) Basila, M. R.; Kantner, T. R. J. Phys. Chem. 1966, 70, 1681.Google Scholar
(22) Miller, J. B.; Johnston, S. T.; Ko, E. I. J. Catal. 1994, 50, 311.10.1006/jcat.1994.1349Google Scholar
(23) Brinker, C. J.; Scherer, G. W. Sol-Gel Science; Academic Press: New York, 1990.Google Scholar
(24) Ying, J. Y.; Benziger, J. B. J. Am. Ceram. Soc. 1993, 76, 2561.Google Scholar