Published online by Cambridge University Press: 10 February 2011
The behavior of MEMS devices is limited by the strength of critical features such as thin ligaments, oxide cuts joining layers, pin joints and hinges. Devices fabricated at Sandia's Microelectronic Development Laboratory have been successfully tested to investigate these features. A series of measurements were performed on samples with gage lengths of 15 to 1000 microns, using conventional and tungsten coated samples as well as samples that include the critical features of standard components in the test section. Specimens have a freely moving pin joint on one end that anchors the sample to the silicon die to allow rotation to reduce effects of bending. Each sample is loaded in uniaxial tension by pulling laterally with a flat tipped diamond in a computer-controlled Nanoindenter. Load is calculated by resolving the measured lateral and normal forces into the applied tensile force and frictional losses. The specimen cross section and gage length dimensions were verified by measuring against a standard in the SEM. Multiple tests can be programmed at one time and performed without operator assistance allowing the collection of significant populations of data.