Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:22:50.575Z Has data issue: false hasContentIssue false

Terahertz-Emitting Silicon-Germanium Devices

Published online by Cambridge University Press:  11 February 2011

Ralph T. Troeger
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Thomas N. Adam
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Samit K. Ray
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Pengcheng Lv
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Ulrike Lehmann
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
James Kolodzey
Affiliation:
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, U.S.A.
Get access

Abstract

In this paper we report on far-infrared emission in the 1–12 THz frequency range from strained SiGe structures. Pseudomorphic superlattices were grown by Molecular Beam Epitaxy (MBE) at the relatively low substrate temperature of 400°C to prevent germanium segregation. Layer thicknesses, composition, and crystallinity were confirmed by high-resolution X-ray diffraction. Devices were designed to produce confined hole states with various energy separations. Mesa devices were etched in a reactive-ion etching system and tested for edge emission over a wide range of drive currents using an FTIR spectrometer in step-scan mode. THz emission was observed in pulsed mode at current densities as low as 50 A/cm2 and at temperatures as high as 50 K, using a liquid-helium-cooled silicon bolometer detector with a lock-in amplifier. Emission spectral peaks occurred at 7.9 and 9.36 THz for two different samples, in good agreement with k·p calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cheville, R. A. and Grischkowsky, D., Appl. Phys. Lett. 67, 1960 (1995)Google Scholar
2. Mittleman, D. M., Gupta, M., Neelamani, R., Baraniuk, R. G., Rudd, J. V., and Koch, M., Appl. Phys. B68, 1085 (1999)Google Scholar
3. McClatchey, K., Reiten, M. T., and Cheville, R. A., Appl. Phys. Lett. 79, 4485 (2001)Google Scholar
4. Jacobsen, R. H., Mittleman, D. M., and Nuss, M. C., Opt. Lett. 21, 2011 (1996)Google Scholar
5. Mittleman, D. M., Jacobsen, R. H., Neelamani, R., Baraniuk, R. G., and Nuss, M.C., Appl. Phys. B67, 379 (1998)Google Scholar
6. Blaser, S., Hofstetter, D., Beck, M., and Faist, J., Electron. Lett. 37 (2001)Google Scholar
7. Mittleman, D. M., Cunningham, J., Nuss, M. C., and Geva, M., Appl. Phys. Lett. 71, 16 (1997)Google Scholar
8. Faist, J., Capasso, F., Sivco, D. L., Hutchinson, A. L., Cho, A. Y., Science 264, 55 (1994)Google Scholar
9. Hofstetter, D., Beck, M., Aellen, T., Faist, J., Oesterle, U., Ilegems, M., Gini, E. and Melchior, H., Appl. Phys. Lett. 78, 1964 (2001)Google Scholar
10. Hass, M., in Semiconductors and Semimetals 3, ed. Willardson, R. K. and Beer, A. C. (Academic Press, 1967), pp. 316 Google Scholar
11. Kagan, M. S., Altukhov, I. V., Chirkova, E. G., Korolev, K. A., Sinis, V. P., Troeger, R. T., Ray, S. K., and Kolodzey, J., Proc. 10th Int. Symp. “Nanostructures: Physics and Technology”, St. Petersburg, Russia, 445 (2002)Google Scholar
12. Dehlinger, G., Diehl, L., Gennser, U., Sigg, H., Faist, J., Ensslin, K., Grützmacher, D., Müller, E., Science 290, 2277 (2000)Google Scholar
13. Bormann, I., Brunner, K., Hackenbuchner, S., Zandler, G., Abstreiter, G., Schmult, S., and Wegscheider, W., Appl. Phys. Lett. 80, 2260 (2002)Google Scholar
14. Lynch, S. A., Dhillon, S. S., Bates, R., Paul, D.J., Arnone, D. D., Robbins, D. J., Ikonic, Z., Kelsall, R. W., Harrison, P., Norris, D. J., Cullis, A. G., Pidgeon, C. R., Murzyn, P., and Loudon, A., Mat. Sci. Eng. B89, 10 (2002)Google Scholar
15. Lynch, S. A., Bates, R., Paul, D. J., Norris, D. J., Cullis, A. G., Ikonic, Z., Kelsall, R. W., Harrison, P., Arnone, D. D., and Pidgeon, C. R., Appl. Phys. Lett. 81, 1543 (2002)Google Scholar
16. Quantum Semiconductor Algorithms, Inc., 5 Hawthorne Circle, Northborough, MA 01532–2711, U.S.A.Google Scholar
17. Rieger, M. M. and Vogl, P., Phys. Rev. B48, 14276 (1993)Google Scholar
18. Godbey, D. J., Hill, J. V., Deppe, J., and Hobart, K. D., Appl. Phys. Lett. 65, 711 (1994)Google Scholar
19. Dashiell, M. W., Troeger, R. T., Rommel, S. L., Adam, T. N., Berger, P. R., Kolodzey, J., Seabaugh, A. C., and Lake, R., IEEE Trans. Electron Dev. 47, 1707 (2002)Google Scholar
20. Adam, T. N., Shi, S., Ray, S. K., Troeger, R. T., Prather, D., and Kolodzey, J., Proc. IEEE Lester Eastman Conference on High Performance Devices, 402 (2002)Google Scholar