Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:31:01.667Z Has data issue: false hasContentIssue false

Templated Crystallization of Calcite on Patterned Self-Assembled Monolayers

Published online by Cambridge University Press:  14 March 2011

Joanna Aizenberg*
Affiliation:
Bell Labs/Lucent Technologies 600 Mountain Ave. Murray Hill, NJ 07974
Get access

Abstract

Micropatterned self-assembled monolayers (SAMs) that serve as substrates for nucleation provide a way of controlling various aspects of the crystallization process with a previously unreachable precision. We focus on crystallization of calcite (CaCO3) on SAMs of HS(CH2)nX (X = CO2H, CH3, SO3H, OH, N(CH3)3Cl) supported on Ag and Au. Fine-tuning of the crystallographic orientation of the forming crystals has been achieved by using different functional groups and metal substrates. By patterning SAMs with microregions having different nucleating activities and proper geometry, it is possible to confine crystallization to well defined, spatially delineated sites. This method provides means to fabricate arbitrarily patterned calcitic arrays with controlled density of nucleation, crystallographic orientation, and crystal sizes. The experimental conditions and the mechanisms discussed can be applied to the templated nucleation of a wide range of inorganic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heuer, A. H., Fink, D. J., Laraia, V. J., Arias, J. L., Calvert, P. D., Kendall, K., Messing, G. L., Blackwell, J., Rieke, P. C., Thompson, D. H., Wheeler, A. P., Veis, A. and Caplan, A. I., Science, 255, 1098 (1992).Google Scholar
2. Murray, C. B., Kagan, C. R. and Bawendi, M. G., Science, 270, 1335 (1995).Google Scholar
3. Stupp, S. I. and Braun, P. V., Science, 277, 1242 (1997).Google Scholar
4. Zelinsky, B. J. J., Brinker, C. J., Clark, D. E. and Ulrich, D. R., Eds., Better Ceramics Through Chemistry (Materials Research Society, Pittsburgh, 1990).Google Scholar
5. Mann, S. and Ozin, G. A., Nature, 382, 313 (1996).Google Scholar
6. Lippmann, F., Sedimentary Carbonate Minerals (Springer-Verlag, Berlin, 1973).Google Scholar
7. Lowenstam, H. A. and Weiner, S., On Biomineralization (Oxford Univ. Press, 1989).Google Scholar
8. Mann, S., Webb, J. and Williams, R. J. P., Eds., Biomineralization. Chemical and Biological Perspectives (VCH, Weinheim, 1989).Google Scholar
9. Landau, E. M., Levanon, M., Leiserowitz, L., Lahav, M. and Sagiv, J., Nature, 318, 353 (1985).Google Scholar
10. Landau, E. M., Wolf, S. G., Levanon, M., Leiserowitz, L., Lahav, M. and Sagiv, J., J. Am. Chem. Soc., 111, 1436 (1989).Google Scholar
11. Addadi, L. and Weiner, S., Proc. Natl. Acad. Sci. USA, 82, 4110 (1985).Google Scholar
12. Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. and Weiner, S., Proc. Natl. Acad. Sci. USA, 84, 2732 (1987).Google Scholar
13. Belcher, A. M., Christensen, R. J., Hansma, P. K., Stucky, G. D. and Morse, D. E., Nature, 381, 56 (1996).Google Scholar
14. Alper, M., Calvert, P. D., Frankel, R., Rieke, P. C. and Tirrell, D. A., Eds., Materials Synthesis Based on Biological Processes (Materials Research Society, Pittsburgh, 1991).Google Scholar
15. Mann, S., Nature, 365, 499505 (1993).Google Scholar
16. Mann, S., Archibald, D. D., Didymus, J. M., Douglas, T., Heywood, B. R., Meldrum, F. C. and Reeves, N. J., Science, 261, 1286 (1993).Google Scholar
17. Zhao, X. K. and Fendler, J. H., J. Phys. Chem., 95, 37163723 (1991).Google Scholar
18. Heywood, B. R. and Mann, S., J. Am. Chem. Soc., 114, 4681 (1992).Google Scholar
19. Mann, S., Heywood, B. R., Rajam, S. and Birchall, J. D., Nature, 334, 692 (1988).Google Scholar
20. Carter, P. W. and Ward, M. D., J. Am. Chem. Soc., 115, 11521 (1993).Google Scholar
21. Frostman, L. M. and Ward, M. D., Langmuir, 13, 330 (1997).Google Scholar
22. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W. and McVay, G. L., Science, 264, 48 (1994).Google Scholar
23. Feng, S. and Bein, T., Nature, 368, 834 (1994).Google Scholar
24. Frostman, L. M., Bader, M. M. and Ward, M. D., Langmuir, 10, 576 (1994).Google Scholar
25. Gupta, V. K. and Abbott, N. L., Science, 276, 1533 (1997).Google Scholar
26. Berman, A., Ahn, D. J., Lio, A., Salmeron, M., Reichert, A. and Charych, D., Science, 269, 515 (1995).Google Scholar
27. Archibald, D. D. and Mann, S., Nature, 364, 430 (1993).Google Scholar
28. Walsh, D., Hopwood, J. D. and Mann, S., Science, 264, 1576 (1994).Google Scholar
29. Douglas, T., Dickson, D. P. E., Betteridge, S., Charnock, J., Garner, C. D. and Mann, S., Science, 269, 54 (1995).Google Scholar
30. Aizenberg, J., Black, A. J. and Whitesides, G. M., Nature, 398, 495 (1999).Google Scholar
31. Aizenberg, J., Black, A. J. and Whitesides, G. M., J. Am. Chem. Soc., 121, 4500 (1999).Google Scholar
32. Larsen, N. B., Biebuyck, H., Delamarche, E. and Michel, B., J. Am. Chem. Soc., 119, 3017 (1997).Google Scholar
33. Kumar, A., Biebuyck, H. A. and Whitesides, G. M., Langmuir, 10, 1498 (1994).Google Scholar
34. Kumar, A., Abbott, N.A., Kim, E., Biebuyck, H.A. and Whitesides, G. M., Acc. Chem. Res., 28, 219 (1995).Google Scholar
35. Berman, A., Addadi, L. and Weiner, S., Nature, 331, 546 (1988).Google Scholar
36. Albeck, S., Aizenberg, J., Addadi, L. and Weiner, S., J. Am. Chem. Soc., 115, 11691 (1993).Google Scholar
37. Archibald, D. D., Qadri, S. B. and Gaber, B. P., Langmuir, 12, 538 (1996).Google Scholar
38. Falini, G., Albeck, S., Weiner, S. and Addadi, L., Science, 1996, 271, 6769.Google Scholar
39. Teng, H. H., Dove, P. M., Orme, C. A. and Yoreo, J. J. De, Science, 282, 724 (1998).Google Scholar
40. Ulman, A., An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly (Academic Press, San Diego, 1991).Google Scholar
41. Laibinis, P. E. and Whitesides, G. M., J. Am. Chem. Soc., 114, 1990 (1992).Google Scholar
42. Nuzzo, R. G., Dubois, L. H. and Allara, D. L., J. Am. Chem. Soc., 112, 558 (1990).Google Scholar
43. Laibinis, P. E., Whitesides, G. M., Allara, D. L., Tao, Y. T., Parikh, A. N. and Nuzzo, R. G., J. Am. Chem. Soc., 113, 7152 (1991).Google Scholar
44. Camillone, N., Chidsey, C. E. D., Liu, G. and Scoles, G., J. Chem. Phys., 98, 4234 (1993).Google Scholar
45. Leveiller, F., Jacquemain, D., Lahav, M., Leiserowitz, L., Deutsch, M., Kjaer, K. and Alsnielsen, J., Science, 252, 1532 (1991).Google Scholar
46. Zasadzinski, J. A., Viswanathan, R., Madsen, L., Garnaes, J. and Schwartz, D. K., Science, 263, 1726 (1994).Google Scholar
47. Böhm, C., Leveiller, F., Jacquemain, D., Mohwald, H., Kjaer, K., Alsnielsen, J., Weissbuch, I. and Leiserowitz, L., Langmuir, 10, 830 (1994).Google Scholar
48. Li, J., Liang, K. S., Scoles, G. and Ulman, A., Langmuir, 11, 4418 (1995).Google Scholar
49. Barabàsi, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge Univ. Press, 1995).Google Scholar