Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:21:07.899Z Has data issue: false hasContentIssue false

Template-Assisted Growth of Nanowires Using Novel Nanoporous Films Fabricated by Inorganic Nano Phase Separation

Published online by Cambridge University Press:  21 March 2011

Kazuhiko Fukutani
Affiliation:
Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0193, Japan
Taiko Motoi
Affiliation:
Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0193, Japan
Tohru Den
Affiliation:
Leading-Edge Technology Development Headquarters, Canon Inc., 5-1, Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0193, Japan
Get access

Abstract

Ultrahigh pore density nanoporous films with a pore diameter of less than 10nm and a pore density exceeding 1016 pores/m2 were developed. Nano phase separation of a eutectic Al-Si system was used for the fabrication of these nanoporous films. Co-sputtered AlSi films form Al nano-cylinders, perpendicular to the substrate and parallel to each other, embedded in an amorphous Si matrix during film growth due to phase separation. Removal of the Al nano-cylinders from the co-sputtered AlSi films by chemical etching gives us ultrahigh pore density nanoporous films. The nanoporous films consist of mainly oxidized silicon. Depending on the film compositions and the film preparation conditions, such as RF power and the deposition temperature, the average pore diameter can be varied systematically from less than 5nm to 13nm with the pore density from 1015 to exceeding 1016 pores/m2. Furthermore we have demonstrated a template-assisted growth of ultrahigh-density Ni nanowire arrays with an aspect ratio of ∼100 in the nanoporous films by electrodeposition. The fabrication method for nanowire arrays using the nanoporous films is quite simple and promising for the fabrication of nanostructured devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chou, S. Y., Wei, M., Krauss, P. R., Fischer, P. B., J. Vac. Sci. Technol. B12, 3695 (1994).Google Scholar
2. White, R. L., New, R. M. H., Pease, R. F. W., IEEE Trans. Magn. 33, 990 (1997).Google Scholar
3. Sun, S., Murray, C. B., Weller, D., Folks, l., Moser, A., Science 287, 1989 (2000)Google Scholar
4. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B47, 12727 (1993).Google Scholar
5. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B47, 16631 (1993).Google Scholar
6. Lin, Y. M., Sun, X., Dresselhaus, M. S., Phys. Rev. B62, 4610 (2000).Google Scholar
7. Thurn-Albrecht, T., Schotter, J., Köstle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarine, K., Black, C. T., Tuominen, M. T., Russell, T. P., Science 290, 2126 (2000).Google Scholar
8. Thurn-Albrecht, T., Steiner, R., DeRouchey, J., Stafford, C. M., Huang, E., Bal, M., Tuominen, M., Hawker, C. J., Russell, T. P., Adv. Mater. 12, 787 (2000).Google Scholar
9. Martin, C. R., Science 266, 1961 (1994).Google Scholar
10. Fukutani, K., Tanji, K., Motoi, T., Den, T., (submitted)Google Scholar
11. Atzmon, M., Kessler, D. A., Srolovitz, D. J., J. Appl. Phys. 72, 442 (1992).Google Scholar
12. Adams, C. D., Srolovitz, D. J., Atzmon, M., J. Appl. Phys. 74, 1707 (1993).Google Scholar
13. Ross, C. A., Smith, H. I., Savas, T., Schattenburg, M., Farthoud, M., Hwang, M., Walsh, M., Abraham, M. C., Ram, R. J., J. Vac. Sci. Technol. B17, 3168 (1999).Google Scholar