Article contents
Template Assisted Fabrication and Magnetic Properties of Cobalt Ferrite Nanostructures
Published online by Cambridge University Press: 29 February 2012
Abstract
Spinel cobalt ferrite nanotubes and nanowires of about five micrometers in length were fabricated using anodic aluminum oxide (AAO) templates of 20 – 200 nm pore diameters and sol-gel processing. A cobalt ferrite sol was prepared by mixing the acetic acid solution of cobalt (II) acetate and ethanol solution of iron (III) acetylacetonate. The templates filled with precursor were obtained after they were dipped into the sol and dried in air. The template/precursor composites were sintered in air at 500 ºC to form cobalt ferrite phase, which was verified by XRD. The morphology of the nanostructures determined by SEM revealed that the cobalt ferrite nanotubes were formed in the channels of 100 nm and 200 nm diameters in the templates, whereas the nanowires were formed in the 20 nm channels of the templates. The magnetic measurement of cobalt ferrite nanowires by a SQUID magnetometer showed that the nanowires are superparamagnetic at room temperature. The room temperature measurement of magnetization versus the applied field on the nanowire arrays in 20 nm channels of templates showed that the coercivity is 1.57 kOe and 1.47 kOe for the nanowire axis parallel and perpendicular to the applied field, respectively, indicating that the nanowire arrays are nearly magnetically isotropic. However, the coercivity of cobalt ferrite nanowires fabricated in this work is much larger than those in the similar systems reported in the literatures.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1408: Symposium BB – Functional Nanowires and Nanotubes , 2012 , mrsf11-1408-bb20-55
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
- 1
- Cited by