Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:38:38.119Z Has data issue: false hasContentIssue false

Temperature Response of Magnetostrictive/Piezoelectric Polymer Magnetoelectric Laminates

Published online by Cambridge University Press:  19 April 2012

Jon Gutiérrez
Affiliation:
Departamento de Electricidad y Electrónica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
Andoni Lasheras
Affiliation:
Departamento de Electricidad y Electrónica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
Jose Manuel Barandiarán
Affiliation:
Departamento de Electricidad y Electrónica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
Jose Luis Vilas
Affiliation:
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
María San Sebastián
Affiliation:
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
Luis Manuel León
Affiliation:
Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, P. Box 644, E-48080-Bilbao, Spain
Get access

Abstract

The temperature effect on the magnetoelectric response of hybrid magnetostrictive/piezoelectric laminated composites in the range from room temperature up to 85 ºC is presented. The samples analyzed consisted of alternating, stacked, layers of a magnetostrictive amorphous metal, and a piezoelectric polymer, bonded to each other with an epoxy. The maximum magnetoelectric effect was observed when the composites were driven at their electromechanical resonance. First, we present results on the fabricability of the laminated composite sensor consisting on Vitrovac 4040® (Fe39Ni39Mo4Si6B12) as the magnetostrictive amorphous component and two different piezoelectric polymers: poly(vinylidene fluoride) (PVDF) and 2,6(β-CN)APB/ODPA (poli 2,6) polyimide, a new type of high temperature piezoelectric polymer. At room temperature induced magnetoelectric voltages of 79.6 and 0.35 V/cm.Oe were measured when using PVDF and poli 2,6 polyimide respectively as the piezoelectric components. When heating, we have observed that the magnetoelectric response of the PVDF-containing device quickly decayed to about 5 V/cm.Oe, while for the poli 2,6- containing one it remained almost constat. We discuss the advantage of using this new piezoelectric polymer due to its good performance at high temperatures, making these magnetoelectric laminate composites suitable for high temperature applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Astrov, D.N., Sov. Phys. JETP 13, 729 (1961).Google Scholar
2. Rado, G.T. and Folen, V.J., Phys. Rev. Lett. 7, 310 (1961).Google Scholar
3. van den Boomgard, J., Van Run, A.M.J.G. and van Suchtelen, J., Ferroelectrics 10, 295 (1976).Google Scholar
4. Lopatin, S., Lopatin, I. and Lisnevskaya, I., Ferroelectrics 162, 63 (1994).Google Scholar
5. Ryu, J., Vázquez Carazo, A., Uchino, K. and Kim, H., Jpn. J. Appl. Phys. 40, 4948 (2001).Google Scholar
6. Zhai, J., Dong, S.X., Xing, Z., Li, J. and Viehland, D., Appl. Phys. Lett. 89, 083507 (2006).Google Scholar
7. Dong, S.X., Zhai, J., Li, J.F. and Viehland, D., Appl. Phys. Lett. 89, 252904 (2006).Google Scholar
8. Dong, S.X., Zhai, J., Bai, F., Li, J.F. and Viehland, D., Appl. Phys. Lett. 87, 062502 (2005).Google Scholar
9. Gonzalo, B., Vilas, J.L., Breczewski, T., Pérez-Jubindo, M.A., De La Fuente, M.R., Rodriguez, M. and León, L.M., J. Pol. Sci. A: Pol. Chem. 47, 722 (2009).Google Scholar
10. Kawai, H., Jpn. J. Appl. Phys. 8, 975 (1969).Google Scholar
11. Ryu, J., Vázquez Carazo, A., Uchino, K. and Kim, H., Jpn. J. Appl. Phys. 40, 4948 (2001).Google Scholar
12. San Sebastián, M., private communication .Google Scholar