Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T16:14:47.700Z Has data issue: false hasContentIssue false

Temperature Dependence of the Magnetoresistance of Co/Re Superlattices

Published online by Cambridge University Press:  21 March 2011

Timothy Charlton
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506-6315
David Lederman
Affiliation:
Department of Physics, West Virginia University, Morgantown, WV 26506-6315
Gian P. Felcher
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, MSD/223, Argonne, IL 60439-4845
Get access

Abstract

Hcp (10.0) Co/Re superlattices were grown by dc magnetron sputtering on sapphire (11.0) substrates with the [00.1] direction of the superlattice in the film plane. The temperature-dependent magnetoresistance (MR) was measured on samples patterned by photolithography from 10 K to 300 K in a 5.5 T superconducting magnet. The pattern allows the measurement of the MR with the current (I) and the magnetic field (H) parallel or perpendicular to the magnetic easy axis (c, the [00.1] direction). Measurements at 5 K on an antiferromagnetically-coupled sample shows dips in the MR near H = 0 when H ∕∕ c and HI, dips below the saturation value at H ∼ 2.5 kOe for H ∕∕ c and H ∕∕ I configuration due to the competition between the anisotropic magnetoresistance (AMR) and the giant magnetoresistance (GMR). Since the AMR is dependent on the transport within the ferromagnetic layers, the temperature dependence yields information about the relative magnitudes of interface vs. bulk spin-dependent scattering. Our analysis shows that the GMR is anisotropic and that the spin-dependent scattering occurs predominantly at the interfaces only for certain configurations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Dan, F. Nguyen Van, Petroff, F., Eithenne, P., Chreuzet, G., Friedrich, A. and Chazelas, J., Phys. Rev. Lett. 62, 2472 (1988).Google Scholar
2. Chikazumi, S., Physics of Magnetism (Wiley, New York, 1964), pp. 419421.Google Scholar
3. Yao, Y. D., Liou, Y., Huang, J. C. A., Liao, S. Y., Klik, I., Yang, W. T., Chang, C. P. and Lo, C. K., J. Appl. Phys. 79, 6533 (1990).Google Scholar
4. Fullerton, E. E., Kelly, D. M., Guimpel, J. and Schuller, I. K., Phys. Rev. Lett. 68, 859 (1992).10.1103/PhysRevLett.68.859Google Scholar
5. Fullerton, E. E., Conover, M. J., Mattson, J. E., Sowers, C. H. and Bader, S. D., Phys. Rev. B. 48, 15755 (1993).Google Scholar
6. Dina, A. and Ounadjela, K., J. Magn. Magn. Mater. 146, 66 (1995).10.1016/0304-8853(94)01657-7Google Scholar
7. Miller, B. H., Chen, E. Y. and Dahlberg, E. D., J. Appl. Phys. 73, 6384 (1993).10.1063/1.352658Google Scholar
8. Huang, J. C. A., Lee, Y. H., Hu, Y. M. and Chang, T. C., J. Appl. Phys. 79, 6276 (1996).Google Scholar
9. Dimitrov, D. V., Prados, C., Hadjipanayis, C. Y. and Xiao, J. Q., J. Magn. Magn. Mater. 189, 25 (1998).Google Scholar
10. Parkin, S. S. P., Phys. Rev. Lett. 71, 1641 (1993).Google Scholar
11. Dieny, B., J. Magn. Magn. Mater. 136, 335 (1994).10.1016/0304-8853(94)00356-4Google Scholar
12. Miller, B. H., Stojkovic, B. P. and Dahlberg, E. D., Phys. Lett. A. 256, 294 (1999).Google Scholar
13. Charlton, T., McChesney, J., Lederman, D., Zhang, F., Hilt, J. Z. and Pechan, M. J., Phys. Rev. B. 59, 11897 (1999).10.1103/PhysRevB.59.11897Google Scholar
14. Charlton, T., Lederman, D., Yusuf, S. M. and Felcher, G. P., J. Appl. Phys. 85,4436 (1999).Google Scholar
15. Charlton, T. and Lederman, D., Phys. Rev. B 63, 94404 (2001).Google Scholar
16. McGuire, T. R. and Potter, R. I., IEEE Trans. Mag. MAG–11, 1018 (1975).Google Scholar
17. Campbell, I. A. and Fert, A., Ferromagnetic Materials, Vol. 3 (North-Holland, Amsterdam, 1982), p. 755.Google Scholar
18. Freitas, P. P., Melo, L. V., Trinadade, I., From, M., Ferreira, J. and Monteiro, P., Phys. Rev. B. 45, 2495 (1992).Google Scholar
19. Butler, W. H., Zhang, X. G., Nicholson, D. M. C. and MacLaren, J. M., J. Magn. Magn. Mater. 151, 354 (1995).Google Scholar
20. Yanagihara, H., Pettit, K., Salamon, M. B., Kita, E. and Parkin, S. S. P., J. Appl. Phys. 81, 5197 (1997).Google Scholar
21. Papaconstantopoulos, D. A., Handbook of the Band Structure of Elemental Solids (Plenum Press, New York, 1986).Google Scholar
22. Dieny, B., Cowache, C., Nossov, A., Dauguet, P., Chaussy, J. and Gandit, P., J. Appl. Phys. 79, 6370 (1996).Google Scholar
23. Folkerts, W., J. Magn. Magn. Mater. 94, 302 (1991).Google Scholar
24. Pettit, K., Giger, S., Parkin, S. S. P. and Salamon, M. B., Phys. Rev. B. 56, 7819 (1997).Google Scholar