Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T02:46:59.721Z Has data issue: false hasContentIssue false

Temperature Dependence of the Absorption Band Gap Edge of GaN

Published online by Cambridge University Press:  21 February 2011

M. O. Manasreh
Affiliation:
Phillips Laboratory (PL/VTRP), Kirtland AFB, NM 87117-5776
A. K. Sharma
Affiliation:
Phillips Laboratory (PL/VTRP), Kirtland AFB, NM 87117-5776
Get access

Abstract

The optical absorption near the fundamental absorption edge in GaN thin films grown on sapphire substrates is studied as a function of temperature. The absorption band edge was determined from either the energy position of the exciton line in samples grown by metalorganic chemical vapor deposition technique, or from the first derivative of the absorption spectra in samples grown by molecular beam epitaxy technique. The band edge energies determined in the temperature range of 13 – 300 K were fitted with Varshni empirical relationship: Eg(K) = Eg(0) – α T2/(T + θD) and with the expression: Eg(K) = Eg(0) – κ/[exp(θE/T) – 1]. It is found that Eg(0), α, θD, and θE to be sample-dependent, which suggests that defects and dislocations significantly affect the optical band edge in GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See for example Nakamura, S., IEEE Circuits and Devices 11, 19 (1995).Google Scholar
2 “GaNand Related Materials”, edited by Pearton, S. J., to be published.Google Scholar
3 See for example Stevens, K. S., Kinniburgh, M., and Beresford, R., Appl. Phys. Lett. 66, 3518 (1995).Google Scholar
4 Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., and Song, J. J., Appl. Phys. Lett. 66, 985 (1995).Google Scholar
5 Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Salvador, A., Sverdlov, B. N., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 66, 3474 (1995).Google Scholar
6 Dingle, R., Sell, D. D., Stokowski, S. E., Dean, P. J., and Zetterstorm, R. B., Phys. Rev. B 3, 497 (1971).Google Scholar
7 Monemar, B., Phys. Rev. B 10, 676 (1974).Google Scholar
8 Aita, C. R., Kubiak, C. J. G., Shih, F. Y. H., J. Appl. Phys. 66, 4360 (1989).Google Scholar
9 Pankove, J. I., Maruska, H. P., and Berkeyheiser, J. E., Appl. Phys. Lett. 17, 197 (1970).Google Scholar
10 Amato, H., Watanabe, N., Koide, N., and Akasaki, I., Jpn. J. Appl. Phys. 32, L1000 (1993).Google Scholar
11 Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
12 Cody, G. D. in “Semiconductors and Semimetals”, vol 21 B, edited by Pankove, J. I. (Academic Press, New York, 1984), chapt. 2, pp. 1179.Google Scholar
13 Urbach, F., Phys. Rev. 92, 1324 (1953).Google Scholar
14 Clark, C. D., dean, P. J., and Harris, P. V., Proc. Roy. Soc. A 277, 312 (1964).Google Scholar
15 Bludeau, W., Onton, A., and Heinke, H. J., Appl. Phys. 45, 1846 (1974).Google Scholar
16 Persans, P. D., Ruppert, A. F., Chan, S. S., and Cody, G. D., Solid State Commun. 51, 203 (1984).Google Scholar
17 An expression of the 0 K Debye temperature was derived as a function of the elastic constants by Marcus, P. M. and Kennedy, A. J., Phys. Rev. 114, 459 (1959) which was then used by E. F. Steigmeier, Appl. Phys. lett. 3, 6 (1963) to estimate the Debye temperature for many semiconductors.Google Scholar