No CrossRef data available.
Published online by Cambridge University Press: 18 March 2011
Magnetic Compton profiles (MCPs) of a DyCo5.4 single crystal were measured at 10 K, 200 K and 300 K. The temperature dependence of the spin moment, which is deduced from the areas under the normalized MCPs, is significantly different from that of the total magnetization measured by a superconducting quantum interference device (SQUID). This difference is due to the presence of a substantial amount of the orbital moment on a Dy site that does not contribute to the magnetic Compton scattering cross section. The analysis of the MCPs reveals that the absolute value of the spin moment increases with increasing temperature and that the spin magnetic moment of the conduction electrons has an opposite sign to the total spin magnetization in the covered range of temperature.