Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:17:12.758Z Has data issue: false hasContentIssue false

Temperature Dependence of Cathodoluminescence From InxGa1-xAs/GaAs Multiple Quantum Wells

Published online by Cambridge University Press:  15 February 2011

K. Rammohan
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
D.H. Rich
Affiliation:
Department of Materials Science and Engineering, University of Southern California, Los Angeles, CA 90089-0241
A. Larsson
Affiliation:
Department of Optoelectronics and Electrical Measurements, Chalmers University of Technology, Göteborg, Sweden
Get access

Abstract

The temperature dependence of the cathodoluminescence (CL) originating from In0.21Ga0.79As/GaAs multiple quantum wells has been studied between 86 and 250 K. The CL intensity exhibits an Arrenhius-type dependence on temperature (T), characterized by two different activation energies. The spatial variations in activation energy caused by the presence of interfacial misfit dislocations is examined. The CL intensity dependence on temperature for T ≲ 150 K is controlled by thermally activated nonradiative recombination. For T ≳ 150 K the decrease in CL intensity is largely influenced by thermal re-emission of carriers out of the quantum wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rosenberg, J.J., Benlamri, M., Kirchner, P.D., Woodall, J.M., and Petit, G.D., IEEE Electron. Dev. Lett. EDL–6, 491 (1985).Google Scholar
2. Osburne, G.C., Phys. Rev. B 27, 5126 (1983).Google Scholar
3. Bir, G.E. and Pikus, G.L., Symmetry and Strain Induced Effects in semiconductors (Wiley, New York, 1974).Google Scholar
4. Schirber, J.E., Fritz, I.J., and Dawson, L.R., Appl. Phys. Lett. 46, 461 (1985).Google Scholar
5. Rich, D.H., George, T., Pike, W.T., Maserjian, J., Grunthaner, F.J., and Larsson, A., J. Appl. Phys. 72, 5834 (1992).Google Scholar
6. Fitzgerald, E.A., Ast, G.D., Kirchner, P.D., Petit, G.D., and Woodall, J.M., J. Appl. Phys. 63, 693 (1988).Google Scholar
7. Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Maree, P.M.J., W.Schaff, Mayer, J.W., Petit, G.D., Stroscio, J.A., and Feenstra, R.M., J. Appl. Phys. 68, 2739 (1990).Google Scholar
8. Bimberg, D., Christen, J., Steckenborn, A., Weimann, G., and Schlapp, W., J. Lumin. 30, 562 (1985).Google Scholar
9. Uno, K., Hirano, K., Noda, S., and Sakaki, A., Proceedings of the 19th International Symposium on GaAs and Related Compounds(IOP, Bristol, 1993), p. 241.Google Scholar
10. Jiang, D.S., Jung, H., and Ploog, K., J. Appl. Phys. 64, 1371 (1988).Google Scholar
11. Jahn, U., Menninger, J., Hey, R., and Grahn, H.T., Appl. Phys. Lett. 64, 2382 (1994).Google Scholar
12. Rich, D.H., Rammohan, K., Tang, Y., Lin, H.T., Maserjian, J., Grunthaner, F.J., Larsson, A., and Borenstain, S.I., Appl. Phys. Lett. 64, 730 (1994).Google Scholar
13. Ball, C.A.B. and Merwe, J.H. Van der, Dislocations in Solids, (North-Holland, Amsterdam, 1983), Chap. 27.Google Scholar
14. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth. 27, 118 (1974).Google Scholar
15. Fox, B.A. and Jesser, W.A., J. Appl. Phys. 68, 2801 (1990).Google Scholar
16. Rammohan, K., Tang, Y., Rich, D.H., Goldman, R.S., Wieder, H.H., and Kavanagh, K.L., Phys. Rev. B 51, 5033 (1995).Google Scholar
17. Rich, D. H., Lin, H.T., and Larsson, A., J. Appl. Phys., in press.Google Scholar