Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:27:57.392Z Has data issue: false hasContentIssue false

Temperature Dependence of Carbon Incorporation in AlxGa1-xAs Grown by Metalorganic Chemical Vapor Deposition (MOCVD)

Published online by Cambridge University Press:  22 February 2011

D.V. Forbes
Affiliation:
Materials Research Laboratory and Microelectronics Laboratory, University of Illinois, Urbana, IL 61801
J.J. Coleman
Affiliation:
Materials Research Laboratory and Microelectronics Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

The dependence of carbon concentration on growth temperature and V/HII ratio for high composition AlxGal-xAs (x>0.40) grown by metalorganic chemical vapor deposition using trimethyl sources has been investigated. The carbon concentration exhibits at least two temperature regimes having different trends with temperature. In the region of 600-675°C, the carbon concentration decreases with temperature, while in the range of 700-800°C, the carbon concentration increases with temperature. This dependence was observed in samples grown in two separate reactors. High values of V/III ratio have been found to suppress the low temperature carbon incorporation in AlAs. The results are qualitatively explained in terms of the chemical reactions and surface kinetics that may occur during the growth of GaAs or AlxGal-xAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dapkus, P.D., Manasevit, H.M., Hess, K.L., Low, T.S., Stillman, G.E., J. Crystal Growth, 55,10, (1981).Google Scholar
2. Kobayashi, N., Makimoto, T., Jpn. J. Appl. Phys., 24,L824, (1985).Google Scholar
3. Kuech, T.F., Veuhoff, E., Kuan, T.S., Deline, V., Potemski, R.,J. Crystal Growth,77, 257,(1986)Google Scholar
4. Kuech, T.F., Wolford, D.J., Veuhoff, E., Deline, V., Mooney, P.M., Potemski, R., Bradley, J., J Appl. Phys., 62,632, (1987).Google Scholar
5. Stringfellow, G.B., J. Crystal Growth, 55, 42, (1981).Google Scholar
6. Tereo, H. and Sumakawa, H., J. Crystal Growth, 68, 157, (1984).Google Scholar
7. Mohammed, K., Merz, J., Kasemet, D., Appl. Phys. Lett., 43,103,(1983).Google Scholar
8. Kuech, T.F., Tischler, M.A., Potemski, R., Cardone, F., Scilla, G.,J. Crystal Growth,98,174, (1989).Google Scholar
9. Tamamure, K., Ogawa, J., Akimoto, K., Mori, Y., Kojima, C., Appl. Phys. Lett.,50,1149, (1987).Google Scholar
10. vandeVen, J., Schoot, H.G., Giling, L.J., J. Appl. Phys.,60,1648, (1986).Google Scholar
11. Kobayashi, N., Fukui, T., Electron. Lett, 20,887, (1989).Google Scholar
12. Stringfellow, G.B.,“Organometallic Vapor Phase Epitaxy-Theory and Practice”, Chap. 4, (1989).Google Scholar
13. Quimet, A.J., Diss University of Connecticut, (1962).Google Scholar
14. Yeddanapalli, L.M., Schubert, L.C., J.Chem. Phys., 14, 1,(1946).Google Scholar
15. Jensen, K., Fotiadis, D.I., Mountziaris, T.J., J. Crystal Growth, 107,1,(1991).Google Scholar
16. Hanna, M.C., Lu, Z.H., Oh, E.G., Mao, E., Majerfeld, A.,J. Crystal Growth, 124,443, (1992).Google Scholar
17. Kim, M.H., Bose, S.S., Skromme, B.J., Lee, B., Stillman, G.E.,J.Electron.Mater.,20,671,(1991)Google Scholar
18. Buchan, N.I., Kuech, T.F., Beach, D., Scilla, G., Cardone, F., J. Appl. Phys, 69, 2156, (1991).Google Scholar