Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:27:12.511Z Has data issue: false hasContentIssue false

The Temperature and Strain Rate Dependence of the Flow Stress of Single Crystal Nial Deformed Along <110>

Published online by Cambridge University Press:  22 February 2011

Stuart A Maloy
Affiliation:
Los Alamos National Laboratory, MST-5, MS-G755, Los Alamos, NM 87545
George T Gray III
Affiliation:
Los Alamos National Laboratory, MST-5, MS-G755, Los Alamos, NM 87545
Get access

Abstract

Single crystal NiAl and Ni-49.75Al-0.25Fe have been deformed along <110> at temperatures of 77, 298 and 773K and strain rates of 0.001/s, 0.1/s and 2000/s. The flow stress of <110> NiAl is rate and temperature sensitive. A significant decrease in the work hardening rate is observed after deformation at 77K and a strain rate of 2000/s. Coarse {110} slip traces are observed after deformation at a strain rate of 2000/s at 77K, while no slip traces were observed after deformation under all other conditions. TEM observations reveal distinct {110} slip bands after deformation at 77K and a strain rate of 2000/s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miracle, D.B., Acta metall. mater., 41[3], pp. 649684, (1993).Google Scholar
2. Noebe, R.D., Bowman, R.R., and Nathal, M.V., Int. Mat. Rev., 38[4], p. 193, (1993).Google Scholar
3. Field, R.D., Lahrman, D.F., and Darolia, R., Mat. Res. Soc. Symp. Proc. vol. 213, pp. 256260, (1991).Google Scholar
4. Ball, A. and Smallman, R.E., Acta Met., vol. 14, pp. 13491355, (1966).Google Scholar
5. Duncan, A.J., Kaufman, M.J., and Schneibel, J.H., Scripta Met. and Mater., 13[1], pp. 105109, (1994).Google Scholar
6. Pascoe, R.T. and Newey, C.W.A., Phys. Stat. Sol, 29, pp. 357366, (1968).Google Scholar
7. Wasilewski, R.J., Butler, S.R., and Hanlon, J.E., Trans, of Met. Soc. of AIME, 239, pp. 13571364, (1967).Google Scholar
8. Darolia, R., Lahrman, D.F., and Field, R.D., Scripta Met., 26, pp. 10071012, (1992).Google Scholar
9. Weaver, M.L., Kaufman, M.J., and Noebe, R.D., Scripta Met.and Mater., 29, pp.11131118, (1993).Google Scholar
10. Darolia, R., in Structural Intermetallics. ed. by Darolia, , Lewandowski, , Liu, , Martin, , Miracle, and Nathal, , TMS, pp. 495504, (1993).Google Scholar
11. Lahrman, D.F., Field, R.D., and Darolia, R., Mat. Res. Soc. Symp., vol. 213, pp. 603607, (1991).Google Scholar
12. Noebe, R.D., Cullers, C.L., and Bowman, R.R., J. Mater. Res., 7[3], pp. 605612, (1992).Google Scholar
13. Kitano, K. and Pollock, T.M., in Structural Intermetallics. ed. by Darolia, , Lewandowski, , Liu, , Martin, , Miracle, and Nathal, , TMS, p. 591, (1993).Google Scholar
14. Frantz, C.E., Follansbee, P.S., and Wright, W.J., in High Energy Rate Fabrication, ed. by Berman, I. and Schroeder, J.W., (NY: Amer. Soc. Mech. Engr.), p. 229, (1984).Google Scholar
15. Kocks, U.F., Unified Constitutive Equations for Creep and Plasticity, Miller, A.K., ed. Elsevier, pp. 188, (1987).Google Scholar