Published online by Cambridge University Press: 25 February 2011
The nature of disorder produced by low energy Ar+ and I+ ions (and atoms) in the III–V compound semiconductors InP and InSb, and in the II–VI semiconductors CdTe, ZnS and ZnSe has been studied in detail by conventional and high resolution transmission electron microscopy. It is demonstrated that for Ar+ ion bombardment the disorder in the III–V compounds comprises segregated indium islands which accumulate on the machined surfaces, while for the II–VI compounds the disorder consists of dense arrays (∼1011 cm−2) of small dislocation loops near to each bombarded surface. When Ar+ ions or Ar atoms are used for thin specimen preparation by milling prior to electron microscopy, the disorder produced gives contrast which seriously obscures images and so complicates their interpretation. This problem concerning the presence of artifactual defects can be greatly reduced or even eliminated by the use of reactive I+ ion milling for the final thinning of specimens.