Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T17:30:30.873Z Has data issue: false hasContentIssue false

TEM Studies of Alloy Clustering in InAlAs Strained Layers

Published online by Cambridge University Press:  26 February 2011

F. Peiro
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica, Univ. Barcelona, Diagonal 645–647, 08028 Barcelona, Spain.
A. Cornet
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica, Univ. Barcelona, Diagonal 645–647, 08028 Barcelona, Spain.
J. R. Morante
Affiliation:
LCMM. Dept. Física Aplicada i Electrònica, Univ. Barcelona, Diagonal 645–647, 08028 Barcelona, Spain.
S. A. Clark
Affiliation:
Dept. of Physics and Astronomy, Univ. of Wales, College of Cardiff, P.O.Box 913, Cardiff, Wales, U.K.
R. H. Williams
Affiliation:
Dept. of Physics and Astronomy, Univ. of Wales, College of Cardiff, P.O.Box 913, Cardiff, Wales, U.K.
Get access

Abstract

Transmission electron microscopy studies have been performed to characterise InxAl1−xAS layers grown by Molecular Beam Epitaxy on (100) InP substrates. The first observations of compositional nonuniformities in strained InAlAs layers are reported. The coarse quasiperiodic structure present in each sample has been found to be dependent upon the growth parameters and the sample characteristics such as strain, thickness and x value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

/1/ Griem, T., Nathan, M., Wicks, G. W., Eastman, L. F., 1984 Int. Symp. on GaAs and related compound, Biarritz (1984).Google Scholar
/2/ Alavi, K., Pearsall, T. P., Forrest, S. R., Cho, A. Y., Electron. Lett. 19, 227 (1983).CrossRefGoogle Scholar
/3/ Welch, D. F., Wicks, G. W., Eastman, L. F., Appl. Phys. Lett. 43, 762 (1983).Google Scholar
/4/ Singh, J., Dudley, S., Davies, B. and Bajaj, K. K., J. Appl. Phys. 60, 3167 (1986)Google Scholar
/5/ Praseuth, J. P., Goldstein, L., Henoc, P., Primot, J., Danan, G., J. Appl. Phys. 61, 215 (1987).CrossRefGoogle Scholar
/6/ Hong, W. P., Bhattacharya, P. K., Singh, J., Appl. Phys. Lett. 50, 618 (1987).CrossRefGoogle Scholar
/7/ Henoc, P., Izrael, A., Quillec, M. and Launois, H., Appl. Phys. Letters 40, 963 (1982).Google Scholar
/8/ Norman, A. G. and Booker, G. R., J. Appl. Phys., 57, 4715 (1985)Google Scholar
/9/ Shadid, M. A., Mahajan, S., Laughlin, D. E. and Cox, H. M., Phys. Rev. Lett., 58, 2567 (1987).Google Scholar
/10/ Glas, F., J. Appl. Phys. 62, 3201 (1987).Google Scholar
/11/ Peiró, F., Cornet, A., Morante, J. R., Clark, S., Williams, R. H., App. Phys. Lett. 59, 1957 (1991).CrossRefGoogle Scholar
/12/ Mahajan, S., Shadid, M. A. and Laughlin, D. E., Inst. Phys. Conf. Ser. 100, 143 (1989).Google Scholar
/13/ Glas, F., NATO ASI series B203 (Plenum Press, New York, 1989) pp. 217233.Google Scholar
/14/ Peiró, F., Cornet, A., Herms, A., Morante, J. R., Clark, S. A., Williams, R. H.. Inst. Phys. Conf. Ser. (1991), to be published.Google Scholar
/15/ Westwood, D. I., Woolf, D. A. and Williams, R. H., J. Crystal Growth 98, 782 (1989).Google Scholar
/16/ Mendelson, S., J. Apl. Phys., 35, 1570 (1965).CrossRefGoogle Scholar
/17/ Treacy, M. M. J., Gibson, J. M., Howie, A., Philos. Mag. A51, 389 (1985).Google Scholar
/18/ Stringfellow, G. B., J. Appl. Phys., 43, 3455 (1972).CrossRefGoogle Scholar