Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T02:22:30.080Z Has data issue: false hasContentIssue false

TEM Observations on the Evolution of Grain Structure in Pressurized Al-0.5Cu Thin Films

Published online by Cambridge University Press:  10 February 2011

H.D. Yang
Affiliation:
Materials Science and Engineering, University of Texas, Arlington, TX 76019
C.-U. Kim
Affiliation:
Materials Science and Engineering, University of Texas, Arlington, TX 76019
M. Saran
Affiliation:
Texas Instruments, Inc., MS 374, 13353 Floyd Rd., Dallas, TX 75243
H.A. Le
Affiliation:
Texas Instruments, Inc., MS 374, 13353 Floyd Rd., Dallas, TX 75243
Get access

Abstract

This paper reports the observations of the grain-refining mechanism found in Al-0.5Cu thin films that are subjected to hydrostatic compressive pressure during the annealing process. The films are deposited on Si substrates and subsequently placed under 60 MPa Ar gas pressure at 400°C. Transmission electron microscopy on these films reveals that plastic deformation occurs by dislocation slip and induces a refined grain structure. Polygonization is the primary mechanism for grain refining, resulting in the formation of sub-grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Frear, D.R., Sanchez, J.E., Romig, A.D. Jr., and Morris, J.W. Jr., Metall. Trans. 21A, 2449 (1990).10.1007/BF02646989Google Scholar
2. Kim, C. and Morris, J.W. Jr., J. Appl. Phys. 73, 4885 (1993).Google Scholar
3. Colgan, E.G. and Rodbell, K.P., J. Appl. Phys. 75, 3423 (1994).10.1063/1.356102Google Scholar
4. Hinode, K., Owada, N., Nishida, T. and Mukai, K., J. Vac. Sci. Technol. B 5, 518 (1987).10.1116/1.583942Google Scholar
5. Hu, H., Trans. AIME 224, 75 (1962).Google Scholar
6. Lytton, J.L., Westmacott, K.H., and Potter, L.C., Trans. AIME 233, 1757 (1965).Google Scholar
7. Rich, P., Microelectron. Eng. 37–38, 305 (1997).10.1016/S0167-9317(97)00126-3Google Scholar
8. Mizobuchi, K., Hamamoto, K., Utsugi, M., Dixit, G.A., Poarch, S., Havemann, R.H., Dobson, C.D., Jeffryes, A.I., Lolverson, P.J., Rich, P., Butler, D.C., Rimmer, N. and McGeown, A., VLSI Technology Symposium Tech. Dig., p.4546 (1995).Google Scholar
9. Dixit, G.A., Taylor, K.J., Singh, A., Lee, C.K., Shinn, G.B., Konecni, A., Hsu, W.Y., Brennan, K., Chang, M.-C. and Havemann, R.H., VLSI Technology Symposium Tech. Dig., p.8687 (1996).Google Scholar
10. Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.W., and Fraser, D.B., J. Electron. Mater. 19, 1231 (1990).10.1007/BF02673337Google Scholar