Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:39:49.975Z Has data issue: false hasContentIssue false

Tem Investigations of CdTe/GaAs(001) Interfaces

Published online by Cambridge University Press:  21 February 2011

J.E. Angelo
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
W.W. Gerberich
Affiliation:
University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455
G. Bratina
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, 1-34012 Trieste, Italy
L. Sorba
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, 1-34012 Trieste, Italy
A. Franciosi
Affiliation:
University of Minnesota, Department of Chemical Engineering and Materials Science, Minneapolis, MN 55455 Laboratorio Tecnologie Avanzate Superfici e Catalisi, Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, 1-34012 Trieste, Italy
M.J. Mills
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
Get access

Abstract

In this study, cross-sectional transmission electron microscopy (XTEM) was used to investigate the defect structure at the interface between CdTe(001) and GaAs(001) as well as CdTe(1 11) and GaAs(001). The heterostructures were fabricated by molecular beam epitaxy on GaAs(001) buffer layers grown in-situ by molecular beam epitaxy. The defect structure at the as-deposited CdTe(001)/GaAs(001) interface consists of both dislocations and planar faults. The planar faults are both microtwins and stacking faults. It is found that annealing of the film ex-situ causes a restructuring of the CdTe near the interface, with the microtwins being completely removed upon annealing to 450°C for 100 hours. The CdTe(111)/GaAs(001) thin film structure consists of a large number of microtwins parallel to the growth direction. This twinned structure is shown to be related to the relaxation of a residual misfit strain normal to the twin direction. Possible mechanisms for the relaxation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Otsuka, N., Kolodziejski, L.A., Gunshor, R.L., Datta, S., Bicknell, R.N., and Schetzina, J.F., Appl. Phys. Lett., 46, 860 (1985).CrossRefGoogle Scholar
[2] Feldman, R.D., Austin, R.F., Disker, D.W., Jaffers, K.S., and Bridenbaugh, P.M., Appl. Phys. Lett., 48, 954, (1986).Google Scholar
[3] Tatarenko, S., Cibert, J., Gobil, Y., Feuillet, G., Saminadayar, K., Chami, A.C., and Ligeon, E., Appl. Surf. Sci., 41/42, 470 (1989).Google Scholar
[4] Bratina, G., Sorba, L., Antonini, A., Ceccone, G., Nicolini, R., Biasiol, G. and Franciosi, A., Angelo, J., and Gerberich, W.W., Phys. Rev. B, 48, 8899 (1993).CrossRefGoogle Scholar
[5] Tatarenko, S., Saminadayar, K., Cibert, J., Gobil, Y., Cohen-Solal, G., and Bailly, F., in: Growth of Compound Semiconductors 2, (SPIE Proc. 944, Bellingham, WA, 988) p.2.CrossRefGoogle Scholar
[6] Gobil, Y., Cibert, J., Saminadayar, K., and Tatarenko, S., Surf. Sci. 211/212, 969 (1989).Google Scholar
[7] Tatarenko, S., Saminadayar, K., and Cibert, J., Appl. Phys. Lett., 51, 1690 (1987).Google Scholar
[8] Cohen-Solal, G., Bailly, F., and Barbé, M., Appl. Phys. Lett., 49, 1519 (1986).Google Scholar
[9] Angelo, J.E., Gerberich, W.W., Bratina, G., Sorba, L., and Franciosi, A., J. Crys. Growth, 130, 459 (1993).Google Scholar
[10] Angelo, J.E., Gerberich, W.W., Stobbs, W.M., Bratina, G., Sorba, L., and Franciosi, A., Phil. Mag. Lett., 67, 279 (1993).Google Scholar
[11] Ponce, F.A., Anderson, G.B., and Ballingall, J.M., Surf. Sci., 168, 564 (1986).Google Scholar
[12] Schwartzman, A.F., in: High Resolution Electron Microscopy of Defects in Materials, (Mater. Res. Soc. Proc. 183, Pittsburgh, PA 1990) p. 161.Google Scholar
[13] Cullis, A.G., Chew, N.G., Irvine, S.J.C., and Geiss, J., in: Microsc. of Semicond. Mater., (Bristol: Institute of Physics, 1987) p. 141.Google Scholar
[14] Angelo, J.E., Gerberich, W.W., Bratina, G., Sorba, L., and Franciosi, A., submitted to Thin Solid Films (1993).Google Scholar
[15] Chew, N.G. and Cullis, A.G., Ultramicroscopy, 23, 175 (1987).Google Scholar
[16] Ligeon, E., Chami, C., Danielou, R., Feuillet, G., Fontenille, J., Saminadayar, K., Ponchet, A., Cibert, J., Gobil, Y., and Tatarenko, S., J. Appl. Phys., 67, 2428 (1990).Google Scholar
[17] Cibert, J., Gobil, Y., Saminadayar, K., Tatarenko, S., Chami, A., Feuillet, G., Dang, L.S., and Ligeon, E., Appl. Phys. Lett., 54, 828 (1988).Google Scholar
[18] Patrat, G., Soyez, E., Brunel, M., Cibert, J., Tatarenko, S., and Saminadayer, K., Solid State Comm., 74, 433 (1990).Google Scholar
[19] Stillinger, F.A. and Weber, T.A., Phys. Rev. B, 31, 5262, (1985).Google Scholar
[20] Wang, Z.Q., Stroud, D., and Markworth, A.J., Phys. Rev. B, 40, 3129 (1989).Google Scholar
[21] Angelo, J.E. and Mills, M.J., in preparation (1993).Google Scholar