Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:17:30.030Z Has data issue: false hasContentIssue false

Tem Investigation of Self-Organized Pbse Quantum Dots as a Function of Spacer Layer Thickness and Growth Temperature

Published online by Cambridge University Press:  10 February 2011

H. H. Kang
Affiliation:
Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland, 20742
L. Salamanca-Riba
Affiliation:
Materials and Nuclear Engineering Department, University of Maryland, College Park, Maryland, 20742
M. Pinczolits
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universtät, A-4040 Linz, Austria
G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universtät, A-4040 Linz, Austria
V. Holy
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universtät, A-4040 Linz, Austria
G. Bauer
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universtät, A-4040 Linz, Austria
Get access

Abstract

The study of the morphology, lateral and vertical correlation of self-organized PbSe quantum dots in Pb1−xEux Te is presented. The samples consist of quantum dot superlattices of n periods of (PbSe/Pb1−xEux Te) grown on PbTe/(111) BaF2 by the S-K mode using MBE. The Pb1−xEux Te spacer thickness was varied from 34.3nm to 312nm and the growth temperature was varied between 335°C and 380°C. Our TEM results show very good lateral and vertical correlation of the dots. The dots form an array with either a/b/c/a/b/c/... or a/a/a/... vertical stacking sequence along the [111] growth direction. The stacking sequence is accurately controlled by the thickness of the Pb1−xEux Te spacer layer thickness and the growth temperature. The best a/b/c/... spatial correlation was obtained for temperatures around 380°C and spacer thickness of ˜40nm. The dots are highly strained and form triangular pyramids with (111) bases and (100) facets as observed by AFM. The shape of the dots also varied with the Pb1−xEux Te spacer thickness. An analysis of the spatial correlation of the dots' size and shape with respect to spacer thickness and growth temperature is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542(1995).Google Scholar
2.Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675(1996).Google Scholar
3.Partin, D. L., IEEE J. Quantum Electronics, 24, 1716(1988).Google Scholar
4.Pinczolits, M., Springholz, G. and Bauer, G., Appl. Phys. Lett. 73, 250(1998).Google Scholar
5.Springholz, G., Holy, V., Pinczolits, M. and Bauer, G., Science, 282, 734(1998).Google Scholar
6.Springholz, G., Ueta, A. Y., Frank, N. and Bauer, G., Appl. Phys. Lett. 69, 2822(1996).Google Scholar
7.Partin, D. L., J. Electon. Mater. 13, 493(1984).Google Scholar
8.Masumura, R. A., Sines, G., J. Appl. Phys. 41, 3930(1970).Google Scholar
9.Holy, V., Springholz, G., Pinczolits, M. and Bauer, G., Phys. Rev. Lett. 83, 356(1999).Google Scholar
10.Deelman, P. W., Schowalter, L. J. and Thundat, T., Mat. Res. Soc. Sym. Proc. 399, 295(1996).Google Scholar