Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:35:41.402Z Has data issue: false hasContentIssue false

TEM investigation of nucleation and initial growth of ZnSe nanowires

Published online by Cambridge University Press:  01 February 2011

Y. Cai
Affiliation:
Physics Department and the Institute of Nano Science and Technology, the Hong Kong University of Science and Technology, Hong Kong, China
S. K. Chan
Affiliation:
Physics Department and the Institute of Nano Science and Technology, the Hong Kong University of Science and Technology, Hong Kong, China
I. K. Sou
Affiliation:
Physics Department and the Institute of Nano Science and Technology, the Hong Kong University of Science and Technology, Hong Kong, China
Y. F. Chan
Affiliation:
Physics Department and the Institute of Nano Science and Technology, the Hong Kong University of Science and Technology, Hong Kong, China
D. S. Su
Affiliation:
Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4–6, D-14195 Berlin, Germany
N. Wang
Affiliation:
Physics Department and the Institute of Nano Science and Technology, the Hong Kong University of Science and Technology, Hong Kong, China
Get access

Abstract

Single crystalline ZnSe nanowires were fabricated on GaAs substrates by molecular beam epitaxy technique via Au-catalyzed vapor-liquid-solid reaction. The nucleation and initial growth of the nanowires were investigated by high-resolution transmission electron microscopy. It was revealed that Au catalysts initially reacted with the substrate forming binary AuGa2 alloy droplets. The sizes of the catalysts determined the growth direction of ZnSe nanowires. A model based on the surface energies of the nanowire nuclei was proposed to explain the size dependence of growth direction for ZnSe nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
2. Morales, A. M. and Lieber, C. M., Science, 279, 208 (1998).Google Scholar
3. Wang, N., Zhang, Y.F., Tang, Y.H., Lee, C.S., and Lee, S.T., Appl. Phys. Lett., 73, 3902 (1998).Google Scholar
4. Yu, D. P., Bai, Z. G., Ding, Y., Hang, Q. L., Zhang, H. Z., Wang, J. J., Zou, Y. H., Qian, W., Xiong, G. C., Zhou, H. T., and Feng, S. Q., Appl. Phys. Lett. 72, 3458 (1998).Google Scholar
5. Appell, D., Nature (London) 419, 553 (2002).Google Scholar
6. Holmes, J. D., Johnston, K.P., Doty, R. C., and Korgel, B. S., Science 287, 1471 (2000).Google Scholar
7. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C., and Lieber, C. M., Nature (London) 415, 617 (2002).Google Scholar
8. Björk, M. T., Ohlsson, B. J., Sass, T., Persson, A. I., Thelander, C., Magnusson, M. H., Deppert, K., Wallenberg, L. R., and Samuelson, L., Appl. Phys. Lett. 80, 1058 (2002).Google Scholar
9. Wu, Z. H., Mei, X. Y., Kim, D., Blumin, M., and Ruda, H. E., Appl. Phys. Lett. 81, 5177 (2002)Google Scholar
10. Chan, Y. F., Duan, X. F., Chan, S. K., Sou, I. K., Zhang, X. X., Wang, N., Appl. Phys. Lett. 83, 2665 (2003).Google Scholar
11. Zhao, Y. and Yakobson, B. I., Phys. Rev. Lett. 91, 35501 (2003).Google Scholar
12. Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., and Jacobson, D. C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar