Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:14:26.248Z Has data issue: false hasContentIssue false

Tem Characterization of Grain Boundaries in Mazed Bicrystal Films of Aluminum

Published online by Cambridge University Press:  15 February 2011

U. Dai-Men
Affiliation:
National Center for Electron Microscopy, MSD, Lawrence Berkeley Laboratory, University of California, Berkeley, Ca. 94720
K. H. Westmacott
Affiliation:
National Center for Electron Microscopy, MSD, Lawrence Berkeley Laboratory, University of California, Berkeley, Ca. 94720
Get access

Abstract

The structure and faceting behavior of near-90° <110> tilt grain boundaries in thin films of aluminum with a unique mazed bicrystal geometry is characterized by conventional, highresolution and high-voltage electron microscopy. In this microstructure the absence of triple junctions allows grain boundaries to facet in optimum orientation (inclination) during annealing. The degree of anisotropy of the boundaries is expressed in the form of a rose plot. Small local deviations in misorientation are shown to be necessary to accommodate optimum boundary segments. The crystallographic symmetry inherent in this microstructure is apparent and utilizedthroughout the analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dahmen, U. and Westmacott, K.H., Scr. Met. 22,1673 (1988)CrossRefGoogle Scholar
2. Madden, M.C., Appl. Phys. Lett. 55, 1077 (1989)CrossRefGoogle Scholar
3. Westmacott, K.H. and Dahmen, U., Proc. ISIAT' 89, 255 (1989)Google Scholar
4. Yamada, I., Inokawa, H. and Takagi, T., J. Appl. Phys. 56, 2746 (1984)CrossRefGoogle Scholar
5. Hasan, M.-A., Radnoczi, G., Sundgren, J.-E. and Hansson, G.V., Surf. Sci. 236, 53 (1990)CrossRefGoogle Scholar
6. Tiemy, B., Johnston, W. and Dahmen, U., to be publishedGoogle Scholar
7. Underwood, E.E. Quantitative Stereology Addision-Wesley (1970)Google Scholar
8. Cahn, J.W. and Kalonji, G., Proc. Conf. Solid-Solid Phase Trans., (1981), eds. H.I. Aaronson et al., p.3 Google Scholar
9. Portier, R. and Gratias, D., J. Phys. Coll. 43, C4–17 (1982)Google Scholar
10. Senechal, M., Comput. Math. Applic, 16, 545 (1988)CrossRefGoogle Scholar
11. Hilliard, J.E., Trans AIME 224, 1201 (1962)Google Scholar
12. Sirotin, Y.I., Shaskolskaya, M.P., Fundamentals of Crystal Physics, MIR Publishers, Moscow, USSR (1982)Google Scholar
13. Kalonji, G. and Cahn, J.W., J. Phys., Coll. C6–25 (1982)Google Scholar
14. Sutton, A.P., in Phase Transformations 1989, Vol.16/17, 563, Gordon and Breach (1989)Google Scholar
15. Dahmen, U., Hetherington, C.J.D., O'Keefe, M.A., Westmacott, K.H., Mills, M.J., Daw, M.S. and Vitek, V., Phil Mag. Lett., 62, 327 (1990)CrossRefGoogle Scholar
16. Stauffer, D., Introduction to Percolation Theory, Taylor and Francis, London (1985)CrossRefGoogle Scholar
17. VanTendeloo, G. and Amelinckx, S., Acta Cryst. A 30, 431 (1974)CrossRefGoogle Scholar
18. Boulesteix, C., phys. stat. so. (a) 86, 11 (1984)CrossRefGoogle Scholar
19. Omar, R. and Mykura, H., MRS Proc. 122, 61 (1988)CrossRefGoogle Scholar