Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T04:44:02.552Z Has data issue: false hasContentIssue false

TEM and STEM study of the Au nano-particles supported on metal oxides

Published online by Cambridge University Press:  01 February 2011

Tomoki Akita
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Ubiquitous Energy Devices, Midorigaoka 1-8-31, Ikeda, N/A, Japan, +81-72-751-9732, +81-72-751-9714
Koji Tanaka
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Ubiquitous Energy Devices, Midorigaoka 1-8-31, Ikeda, N/A, Japan, +81-72-751-9732, +81-72-751-9714
Masanori Kohyama
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Ubiquitous Energy Devices, Midorigaoka 1-8-31, Ikeda, N/A, Japan, +81-72-751-9732, +81-72-751-9714
Masatake Haruta
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Ubiquitous Energy Devices, Midorigaoka 1-8-31, Ikeda, N/A, Japan, +81-72-751-9732, +81-72-751-9714
Get access

Abstract

The Au nano-particles are deposited on the metal oxide substrate, TiO2 and CeO2, and the structure of the Au particles and Au-metal oxide interface was observed by TEM and HAADF-STEM. It was found that the growth of Au particles on TiO2 and CeO2 by heating treatment is suppressed in the reductive atmosphere. The HAADF-STEM observation was carried out and the atomically resolved HAADF-STEM images in profile-view are successfully obtained for Au/TiO2 and Au/CeO2 samples. The Au particles tend to supported on CeO2 surface with the flat interface compared to the TiO2 substrate. The incoherent interface is observed for the Au particles-CeO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haruta, M., Catal. Today 36 (1997) 153.10.1016/S0920-5861(96)00208-8Google Scholar
2. Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392 (1998) 768.10.1038/33823Google Scholar
3. Kawasaki, T., Takai, Y., Shimizu, R., Appl. Phys. Lett. 79 (2001) 3509.10.1063/1.1420782Google Scholar
4. Browning, N. D. and Pennycook, S. J., J. Phys. D: Appl. Phys. 29 (1996) 1779..10.1088/0022-3727/29/7/013Google Scholar
5. Shibata, N., Pennycook, S. J., Gosnell, T. R., Painter, G. S., Shelton, W. A., Becher, P. F., Nature 428 (2004) 730 Google Scholar
6. Zanella, R., Louis, C., Catal. Today 107–108 (2005) 768.10.1016/j.cattod.2005.07.008Google Scholar
7. Okazaki, K., Morikawa, Y., Tanaka, S., Tanaka, K., Kohyama, M., Phys. Rev. B69 (2004) 235404.10.1103/PhysRevB.69.235404Google Scholar
8. Cosandey, F., Madey, T. E., Surf. Rev. Lett. 8 (2001) 73.10.1142/S0218625X01000884Google Scholar
9. Akita, T., Okumura, M., Tanaka, K., Haruta, M., J. Catal. 212 (2002) 119.10.1006/jcat.2002.3747Google Scholar
10. Akita, T., Okumura, M., Tanaka, K., Kohyama, M., Haruta, M., J. Mater. Sci. 40 (2005) 3101.10.1007/s10853-005-2670-8Google Scholar