Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:30:30.836Z Has data issue: false hasContentIssue false

TEM and HREM Investigation of The Precipitation of Cobalt and Nickel In Polycrystalline Silicon

Published online by Cambridge University Press:  25 February 2011

H. J. Möller
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Juyong Chung
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Lan Huang
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

The precipitation behavior of cobalt and nickel at grain boundaries in multicrystalline silicon is investigated. The metals are diffused into the specimens from a surface source between 800 -1000 °C and the precipitation after cooling is studied by conventional and high resolution TEM. Cobalt and nickel disilicide precipitates nucleate both in the bulk and at grain boundaries. They form few large (micrometer size) plate-like or three-dimensional precipitates depending on the cooling rate. Cobalt disilicide with a slightly larger lattice mismatch has a higher tendency to nucleate at large angle grain boundaries. Both suicides nucleate preferentially at coherent twin boundaries forming a few atomic layers thick platelet parallel to the {111} twin plane. HREM and image simulations are performed to analyze the Si / MS12 / twin interface structure (M = Co, Ni).

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Aucoutourier, M., Broniatowski, A., Chari, A., Maurice, J.L., in Polvcrystalline Semiconductors. ed. by Möller, H.J. et al., Springer Proceedings in Physics 35, 64 (1989)Google Scholar
2) Maurice, J.L. and Colliex, C., Appl. Phys. Lett. 55, 241 (1989)Google Scholar
3) Broniatowski, A., Phys. rev. Lett. 62, 3074 (1989)Google Scholar
4) Weber, E., Appl. Phys. A30, 1 (1983)CrossRefGoogle Scholar
5) Cerva, H. and Wendt, H., Mater. Res. Soc. Proc. 99, 99 (1988)Google Scholar
6) Wendt, H., Cerva, H., Lehmann, V. and Palmer, W., J.Appl. Phys. 65, 2402 (1989)CrossRefGoogle Scholar
7) Das, G.: J. Appl. Phys. 44, p. 4459, 1973 CrossRefGoogle Scholar
8) Nes, E. and Washburn, J.: J. Appl. Phys. 42, p. 3562, 1971 Google Scholar
9) Nes, E. and Washburn, J.: J. Appl. Phys. 44, p. 3682, 1973 Google Scholar
10) Nes, E. and Solberg, J. K.: J. Appl. Phys. 44, p. 486, 1973 Google Scholar
11) Ryoo, K., Drosd, R., and Wood, W.: J. Appl. Phys. 63, 4440, 1988 CrossRefGoogle Scholar
12) Solberg, J.K. and Nes, E.: Phil. Mag. A37, 465, 1978 Google Scholar
13) Seibt, M. and Graff, K.: Mat. Res. Soc. Proc. 104, 215 (1988)CrossRefGoogle Scholar
14) Seibt, M. and Graff, K.: J. Appl. Phys. 63 4444, 1988 Google Scholar
15) Seibt, M. and Schröter, W., Phil. Mag. A 59. 337 (1989)Google Scholar
16) Jendrich, U. and Möller, H.J., MRS Symp. Proc. Vol. 163, 579 (1990)Google Scholar
17) Jendrich, U. and Möller, H.J., J. de Physique 51–Cl. 197 (1990)Google Scholar
18) Mariotton, B.P. and Goesele, U., J. Appl. Phys. 63 4661 (1988)Google Scholar
19) Hull, R., Hsieh, Y.F., Short, K.T., White, A., Cherns, D., MRS Symp. Proc. 83, 91 (1990)Google Scholar
20) Gibson, J.M., Bean, J.C., Poate, J.M., and Tung, R.T., Appl. Phys. Lett. 41, 818 (1982)CrossRefGoogle Scholar
21) Cherns, D., Anstis, G.R., Hutchinson, J.L., and Spence, J., Phil. Mag. A46. 849 (1982)CrossRefGoogle Scholar
22) Möller, H.J., Jendrich, U., Huang, L., and Foitzig, A., MRS Symp. Proc. 209, 333 (1991)Google Scholar
23) Tütken, T., Schröter, W., Möller, H.J., in Polvcrystalline Semiconductors, ed. by Möller, H.J. et al., Springer Proceedings in Physics 21, 108 (1989)Google Scholar