Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:56:55.413Z Has data issue: false hasContentIssue false

Technology Computer Aided Design of Ultra-shallow Junctions in Si Devices Formed by Laser Annealing Processes

Published online by Cambridge University Press:  17 March 2011

Antonino La Magna
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, I-95121 Catania, Italy
Paola Alippi
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, I-95121 Catania, Italy
Vittorio Privitera
Affiliation:
CNR-IMM Sezione Catania, Stradale Primosole 50, I-95121 Catania, Italy
Guglielmo Fortunato
Affiliation:
CNR-IFN Sezione Roma, Via Cineto Romano 42, 00156 Rome, Italy
Marco Camalleri
Affiliation:
STMicroelctronics Stradale Primosole 50, I-95121 Catania, Italy
Bengt Svensson
Affiliation:
Department of Phisics University of Oslo, 1048 Blindern N-0316 Olso, Norway
Get access

Abstract

The simulation of laser annealing, applied to the formation of ultra-shallow junctions in Si, is discussed. Our effort is developing tools capable to aid the process integration issue. The numerical approach deals with a double problem: 1) the interaction between the irradiated transistor structure and the laser light, 2) the non-equilibrium evolution of the thermal field, molten regions and dopant density. Here we present a complete methodology: the calculated heat source distribution, induced by the irradiation, is used as input of a phase-field approach for the simulation of the thermal phase and impurity fields. We solved numerically the phase field equations in two dimensional structures, considering as an initial status the generic material modification due to an ion implant process. We present various simulation results obtained in MOS structures with different geometry. With the support of the simulation results we discuss the problematic and the perspectives of the excimer laser annealing process application in the fabrication of MOS devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Whelan, S., Privitera, V., Italia, M., Mannino, G., Spinella, C., Fortunato, G. and Mariucci, L., Stanizzi, M., Mittiga, A J. Vac. Sci. Technology B20 644, (2002).Google Scholar
2. Whelan, S., Magna, A. La, Privitera, V., Mannino, G., Italia, M., Bongiorno, C., Fortunato, G. and Mariucci, L., Phys. Rev. B 67, 075201 (2003).Google Scholar
3. Sullivan, D. M., Electromagnetic Simulation Using The FDTD Method (IEEE press 2000).Google Scholar
4. Caginalp, G., Phys. Rev. A 39 887, (1989).Google Scholar
5. Ahamd, N.A., Wheeler, A.A., Boettinger, W.J. and McFadden, G.B. Phys. Rev. E 58 3436, (1998).Google Scholar
6. Magna, A. La, Alippi, P., Privitera, V., Fortunato, G., Camalleri, M., Svensson, B., Jour. Appl. Phys. in press May 2004.Google Scholar
7. Cheng, Y.K., Lo, S.H., Leung, A.Y.T., Finite Element Implementation (Blackwell Science 1996).Google Scholar
8. Magna, A. La, Alippi, P., Privitera, V., Scalese, S., Pannitteri, S., Fortunato, G., Camalleri, M. submitted to Appl. Phys. Lett.Google Scholar
9. Dezfulian, K. et al. , Appl. Phys. Lett 81 2238, (2002).Google Scholar