Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T00:52:59.297Z Has data issue: false hasContentIssue false

Target Morphologies in Polymer Blends

Published online by Cambridge University Press:  01 February 2011

Nigel Clarke
Affiliation:
Department of Chemistry, University of Durham, Durham, DH1 3LE, UK
Ian Henderson
Affiliation:
Department of Chemistry, University of Durham, Durham, DH1 3LE, UK
Get access

Abstract

We model a novel process for obtaining controlled morphologies in polymer blends. Particles of one type of polymer are allowed to dissolve in a matrix of a dissimilar polymer. Prior to complete dissolution the blend is quenched into the two phase region, such that phase separation takes place. The combination of the incomplete dissolution and the wavelength selection process associated with phase separation results in particles that during the ‘intermediate’ stages have a core that is significantly rich in the matrix material. The concept is extended to consider the effect of phase separation on an inhomogeneous surface chemically patterned with regions which are more attractive to one component of the blend.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Edrington, A. C., Urbas, A. M., DeRege, P., et al., Adv. Mater. 13, 421 (2001).Google Scholar
2. Halls, J. J. M., Walsh, C. A., Greenham, N. C., et al., Nature 376, 498 (1995).Google Scholar
3. Berggren, M., Inganas, O., Gustafsson, G., et al., Nature 372, 444 (1994).Google Scholar
4. Puri, S. and Frisch, H. L., J. Phys.: Condens. Matter 9, 2109 (1997).Google Scholar
5. Binder, K., J. Non-Equilib. Thermodyn. 23, 1 (1998).Google Scholar
6. Boltau, M., Walheim, S., Mlynek, J., et al., Nature 391, 877 (1998).Google Scholar
7. Ermi, B. D., Nisato, G., Douglas, J. F., et al., Phys. Rev. Lett. 81, 3900 (1998).Google Scholar
8. Higgins, A. M. and Jones, R. A. L., Nature 404, 476 (2000).Google Scholar
9. Karim, A., Douglas, J. F., Nisato, G., et al., Macromolecules 32, 5917 (1999).Google Scholar
10. Lee, B. P., Douglas, J. F., and Glotzer, S. C., Phys. Rev. E 60, 5812 (1999).Google Scholar
11. Clarke, N., Phys. Rev. Lett. 89, 215506 (2002).Google Scholar
12. Kwak, K. D., Okada, M., Chiba, T., et al., Macromolecules 26, 4047 (1993).Google Scholar
13. Henderson, I. C. and Clarke, N., Macromolecules 37, 1952 (2004).Google Scholar
14. Cahn, J. W. and Hilliard, J. E., J. Chem. Phys. 28, 258 (1958).Google Scholar
15. Cook, H. E., Acta Metall. 18, 297 (1970).Google Scholar
16. Pincus, P., J. Chem. Phys. 75, 1996 (1981).Google Scholar
17. Binder, K., J. Chem. Phys. 79, 6387 (1983).Google Scholar