Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T11:09:29.447Z Has data issue: false hasContentIssue false

Tantalum Nitride Thin Films Synthesized by Pulsed Nd:YAG Laser Deposition Method

Published online by Cambridge University Press:  10 February 2011

Hiroharu Kawasaki
Affiliation:
Department of Electrical Engineering. Sasebo National College of Technology, Okishin 1-1, Saseho. Nagasaki. 857-1193, Japan
Kazuya Doi. Jun Namba
Affiliation:
Department of Electrical Engineering. Sasebo National College of Technology, Okishin 1-1, Saseho. Nagasaki. 857-1193, Japan
Yoshiaki Suda
Affiliation:
Department of Electrical Engineering. Sasebo National College of Technology, Okishin 1-1, Saseho. Nagasaki. 857-1193, Japan
Get access

Abstract

Tantalum nitride (TAN) films have been deposited on silicon substrates by using a pulsed Nd:YAG laser deposition method. Experimental results suggest that the substrate temperature is one of the most important parameters to prepare crystalline tantalum nitride thin films. Glancing-angle X-ray diffraction patterns show that the films deposited at Ts ≤ 300 °C are almost amorphous. and crystalline Ta6N2.57 films are obtained at Ts ≥ 500 °C. Grain size of the film increases with increasing substrate temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Radhakrishnan, K., Ing, Ng Geok and Gopalakrishnan, R.: Mat. Sci. Eng. B57 224 (1999).Google Scholar
2 Qin, Y., Liu, L. and Chen, L.: J. Alloys and Compounds 269 238 (1998).Google Scholar
3 K, Holloway, Fryer, P. M.. Cabral, C. Jr, Harper, J. M. E., Bailey, P. J. and Keileher, K. H.: J. Appl. Phys. 71 5433 (1992).Google Scholar
4 Takeyama, M., Noya, A., Sasc, T. and Ohta, A.: J. Vac. Sci. Tcehnol. B 14 674 (1996).Google Scholar
5 Min, K. H., Chun, K. C. and Kirn, K. B.: J. Vac. Sci. Technol. B 14 3263 (1996).Google Scholar
6 Olowolafce, J. O., Mogab, C. J., Gregory, R. B. and Kottke, M.: J. Appl. Phys. 72 4099 (1992).Google Scholar
7 Suda, Y., Nakazono, T., Ebihara, K. and Baba, K.: Nucl. Instr. and Meth. in Phys. Res. B. 121 396 (1997).Google Scholar
8 Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Hatada, H.: Materials Chemistry and Physics 54 177 (1998).Google Scholar
9 Suda, Y., Kawasaki, H., Terajima, R., Emura, M., Baba, K., Abe, H., Yoshida, H., Ebihara, K. and Aoqui, S.: J. Korea. Phys. Soc. 35 S88 (1999).Google Scholar
10 Suda, Y., Kawasaki, H., Terajima, R. and Emura, M.: Jpn. J. Appl. Phys. 38 3619 (1999).Google Scholar
11 Suda, Y., Nakazono, I., Ebihara, K. and Baba, K.: Thin Solid Films 281–282 324 (1996).Google Scholar
12 Suda, Y., Nakazono, T., Ebihara, K., Baba, K. and Aoqui, S.: Carbon 36 771 (1998).Google Scholar
13 Suda, Y., Ebihara, K.. Baba, K., Abe, H. and Grishin, A. M.: Nano Structured Materials 12 291 (1999).Google Scholar