Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T17:01:51.986Z Has data issue: false hasContentIssue false

Tailoring the Work Function of Chalcopyrite Thin Films with Self-Assembled Monolayers of Thiols

Published online by Cambridge University Press:  01 February 2011

Sebastian Lehmann
Affiliation:
[email protected], Hahn-Meitner Institut Berlin, Solar Energy Research, Glienicker Strasse 100, Berlin, 14109, Germany, +49-30-8062-2299, +49-30-8062-3199
David Fuertes Marrón
Affiliation:
[email protected], Hahn-Meitner Institut Berlin, Solar Energy Research, Glienicker Strasse 100, Berlin, 14109, Germany
Marcus Bär
Affiliation:
[email protected], University of Nevada, Department of Chemistry, 4505 Maryland Parkway, Box 454003, Las Vegas, NV, 89154-4003, United States
Iver Lauermann
Affiliation:
[email protected], Hahn-Meitner Institut Berlin, Solar Energy Research, Glienicker Strasse 100, Berlin, 14109, Germany
Harry Mönig
Affiliation:
[email protected], Hahn-Meitner Institut Berlin, Solar Energy Research, Glienicker Strasse 100, Berlin, 14109, Germany
Martha Ch. Lux-Steiner
Affiliation:
[email protected], Hahn-Meitner Institut Berlin, Solar Energy Research, Glienicker Strasse 100, Berlin, 14109, Germany
Get access

Abstract

Self-assembled monolayers of fluorinated thiols have been used as a means of surface conditioning to modify the work function of polycrystalline, wide-gap, chalcopyrite thin films. The molecular dipole, characteristic of such polar molecules, could be transferred to the surface of the semiconductor. Self-arrangement and orientation of the molecules upon adsorption ensured a net dipole contribution that was observed by means of ultra-violet photoemission spectroscopy. Such an approach offers a simple way for interface engineering, with a potential impact on the design of compound-specific band alignments of chalcopyrite-based devices. Molecular mechanics calculations of the expected molecular geometries complemented this work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klenk, R., Thin Solid Films 387, 135, (2001).Google Scholar
2. Rau, U., in Proc. 3rd World Conference on Photovoltaic Energy Conversion, 2847, (2003).Google Scholar
3. Marrón, D. Fuertes, Meeder, A., Lehmann, S., Rusu, M., Schedel-Niedrig, Th., and Lux-Steiner, M. Ch., in Proc. 31st IEEE Photovoltaic Specialist Conference, 303, (2005).Google Scholar
4. Campbell, I. H., Rubin, S., Zawodzinski, T. A., Kress, J. D., Martin, R. L., Smith, D. L., Barashkov, N. N., and Ferraris, J. P., Phys Rev. B 54, 14321, (1996).Google Scholar
5. Cahen, D. and Hodes, G., Adv. Mater. 14, 789, (2002).Google Scholar
6. Ulman, A., Chem. Rev. 96, 1533, (1996).Google Scholar
7. Love, J. Christopher, Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., and Whitesides, G. M., Chem. Rev. 105, 1103, (2005).Google Scholar
8. Rusu, M., Wiesner, S., Marrón, D. Fuertes, Meeder, A., Doka, S., Bohne, W., Lindner, S., Schedel-Niedrig, T., Giesen, C., Heuken, M., and Lux-Steiner, M. Ch., Thin Solid Films 451-452, 556, (2004).Google Scholar
9. Lehmann, S., Marrón, D. Fuertes, submitted to J. Appl. Phys. Google Scholar
10. Würz, R., Meeder, A., Marrón, D. Fuertes, Schedel-Niedrig, Th., Knop-Gericke, A., and Lips, K., Phys. Rev. B, 70, 205321, (2004).Google Scholar
11. Meeder, A., Weinhardt, L., Stresing, R., Marrón, D. Fuertes, Würz, R., Babu, S. M., SchedelNiedrig, Th., Lux-Steiner, M.Ch., Heske, C., and Umbach, E., J. Phys. Chem. Solids, 64, 1553, (2003).Google Scholar
12. Cahen, D. and Kahn, A., Adv. Mater., 15, 271, (2003).Google Scholar
13. Lehmann, S. et al. in preparation.Google Scholar