Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T12:25:43.896Z Has data issue: false hasContentIssue false

Tailoring the Microstructure of Polyimide-Silica Materials Using the Sol-Gel Process

Published online by Cambridge University Press:  10 February 2011

J. C. Schrotter
Affiliation:
LMPM, UMR 5635 CNRS, UMIH, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier, Francesmaihi@critl .univ-montp2.fr
M. Smaihi
Affiliation:
LMPM, UMR 5635 CNRS, UMIH, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier, Francesmaihi@critl .univ-montp2.fr
C. Guizard
Affiliation:
LMPM, UMR 5635 CNRS, UMIH, ENSCM, 8 rue de l'Ecole Normale, 34053 Montpellier, Francesmaihi@critl .univ-montp2.fr
Get access

Abstract

Polyimide-silica materials have been prepared via the sol-gel process by mixing tetramethoxysilane with a polyamic acid. Two polyamic acids have been used. The first is obtained with an equimolar mixture of oxydianiline (ODA) and pyromellitic dianhydride (PMDA) in dimethyacetamide. The second is prepared with a mixture of PMDA with aminopropyltrimethoxysilane (APrTMOS).

The microstructure of the materials obtained with these two polyamic acids are drastically different. The presence of both amino and methoxy side-groups on the APrTMOS enables a chemical bonding between the organic and the inorganic networks resulting in the formation of homogeneous films. On the other side, no chemical bond is provided by the ODA-PMDA polyamic acid resulting in a biphasic microstructure where pure silica particles are embedded in a polyimide matrix.

These two types of materials have been characterized in order to point out the key parameters of their microstructure. 29Si NMR, thermogravimetric analysis, scanning electron microscopy and infra-red spectroscopy have been used to study materials containing various proportions of TMOS and prepared with various hydrolysis ratios.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Arnold, C.A., Chen, Y.P., Rogers, M.E., Graybeal, J.D. and McGrath, J.E., 3rd International SAMPE Electronics Conference, 198 (1989).Google Scholar
2- Nagase, Y., Mori, S., Egawa, M. and Matsui, K., Makromol. Chem., 191, p.2413 (1990).Google Scholar
3- Yoon, T.H., Arnold-McKenna, C.A. and McGrath, J.E., J. Adhesion, 39, p. 15 (1992).Google Scholar
4- Akiyama, E., Takamura, Y. and Nagase, Y., Makromol. Chem., 193, p. 1509 (1992).Google Scholar
5- Itoh, M. and Mita, I., J. Polym; Science: Part A: Polymer Chemistry, 32, p. 1581 (1994).Google Scholar
6- Ghadir, M., Zimonyi, E. and Nagy, J., J. Thermal Analysis, 41, p. 1019 (1994).Google Scholar
7- Kaltenecker-Commerçon, J.M., Ward, T.C., Gungor, A. and McGrath, J.E.,J. Adhesion, 44, p. 85 (1994).Google Scholar
8- Morikawa, A., Yamaguchi, H., Kakimoto, M. and Imai, Y., Chem. Mater, 6, p.913 (1994).Google Scholar
9- Mascia, L. and Kioul, A., J. Mater. Sci. Letters, 13, p. 641 (1994).Google Scholar
10- Goizet, S., Schrotter, J.C. and Smaihi, M., New J.of Chem., submitted.Google Scholar
11- Spinu, M., Brennan, A., Rancourt, J., Wilkes, G.L. and McGrath, J.E., MRS Symposia Proceedings, 175, p. 179 (1990).Google Scholar
12- Wang, S., Ahmad, Z. and Mark, J.E., Chem. Mater., 6, p.943 (1994).Google Scholar
13- Schrotter, J.C., Smaihi, M., Guizard, C., J. Applied Polymer Science, in press (1996).Google Scholar
14- Smaihi, M., Jermoumi, T., Marignan, J., Chem. Mater.,7, p.2293 (1995).Google Scholar