Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T10:00:00.542Z Has data issue: false hasContentIssue false

Tailorable Rectification: A study of Vertical Transport in AlGaN/GaN Heterostructures

Published online by Cambridge University Press:  21 March 2011

Madhusudan Singh
Affiliation:
Department of Electric Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109
Jaspirt Singh
Affiliation:
Department of Electric Engineering and Computer Science University of Michigan, Ann Arbor, MI 48109
Umesh Mishra
Affiliation:
Department of Electric Computer Engineering University of California, Santa Barbara, CA 93106
Get access

Abstract

In this paper, we report calculations that show that a metal-polar semiconductor heterostructure can exhibit highly controllable non-linear current-voltage (I-V) characteristics. Change in barrier thickness can alter the characteristics from Schottky-like to ohmic in different bias regimes. The origin of these unusual effects is a large electric field (> 106 V/cm) and high sheet charge (∼1013 – 1014 cm-2) without doping, in the polar heterostructure. Theoretical calculation of the tunneling current density in these systems indicates that very interesting non-linear behaviour is shown by theseystems, ev en in the undoped case. Choice of suitable compositions of the materials and thicknesses can be used to tailor devices with desired characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Akasaki, I., Amano, H., Nagahama, S., Tanaka, T., and Koike, M., Jpn. J. Appl. Phys., Part 2 34, 1517 (1995).10.7567/JJAP.34.L1517Google Scholar
[2] Nagahama, S., Senoh, M., Nagahama, S., Iwasa, N., Tanaka, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Appl. Phys. Lett. 69, 3034 (1996).Google Scholar
[3] Bulman, G.E., Doverspike, K., Sheppard, S. T., Weeks, T. W., Kong, H. S., Dieringer, H. M., Edmond, J. A., Brown, J. D., Swindell, J. T., and Schetzena, J. F., Electronics Lett. 33, 1556 (1997).10.1049/el:19971025Google Scholar
[4] Mack, M. P., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U. K., Coldren, L., and DenBaars, S., MRS Internet J. Nitride Semicond. Res. 2, 56 (1997).10.1557/S1092578300001678Google Scholar
[5] Aktas, O., Fan, Z.F., Botchk, A. arev, Mohammad, S. N., Roth, M., Jenkins, T., Kehias, L., and Morkoc, H., IEEE Electron 18, 293 (1997).Google Scholar
[6] Shur, M. S. and Khan, M. A., MRS Bulletin 22, 44 (1997).10.1557/S0883769400032565Google Scholar
[7] Wu, Y. F., Keller, S., Kozodoy, P., Keller, B. P., Parikh, P., Kapolnek, D., DenBaars, S.P., and Mishra, U. K., IEEE Electron Device Lett. 18, 290 (1997).10.1109/55.585362Google Scholar
[8] Mishra, U. K., Wu, Y. F., Keller, B. P., Keller, S., and DenBaars, S. P., IEEE Trans. Micro w av Theory Tech. 46, R7 (1998).Google Scholar
[9] Dimitrov, R., Wittmer, L., Felsl, H., Mitchell, A., Ambacher, O., and Stutzmann, M., Phys. Stat. Sol. (A) 168, R7 (1998).10.1002/(SICI)1521-396X(199808)168:2<R7::AID-PSSA99997>3.0.CO;2-B3.0.CO;2-B>Google Scholar
[10] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., etal., J. Appl. Phys. 85, 3222 (1999).10.1063/1.369664Google Scholar
[11] Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phy. Rev. B 56, 10024 (1997).10.1103/PhysRevB.56.R10024Google Scholar
[12] Smorchk, I. P. ova, Elsass, C. R., Φbbetson, J., Ventury, R., Heying, B., Fini, P., Haus, E., DenBaars, S.P., Speck, J.S., and Mishra, U. K., J. Applied Physics 86, 4520 (1999).10.1063/1.371396Google Scholar
[13] Zhang, Y. and Singh, J., J. Appl. Phys. 85, 587 (1999).10.1063/1.369493Google Scholar
[14] Singh, M., Zhang, Y., Singh, J., and Mishra, U., Applied Phys. Lett. 77, 1867 (2000).10.1063/1.1311818Google Scholar