Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:18:36.595Z Has data issue: false hasContentIssue false

Systematic Trends in Non-resonant Inelastic X-ray Scattering of Actinides

Published online by Cambridge University Press:  23 May 2012

Gerrit van der Laan*
Affiliation:
Diamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom SEAES, University of Manchester, Manchester, United Kingdom
Get access

Abstract

Nonresonant inelastic x-ray scattering (NIXS) measurements probing the 5d → 5f electronic transitions at the uranium O4,5 edges in a localized electron system such as UO2 show a good agreement with many-electron atomic spectral calculations. The higher multipole spectra are split into two peaks that can be assigned as the 5d5/2 and 5d3/2 structures, despite the large electrostatic interactions. A new sum rule for the branching ratio of spin-orbit split core levels in electric multipole spectra, which generalizes the sum rule for dipole transitions in x-ray absorption spectroscopy, allows for a systematic analysis of the NIXS spectra. The branching ratio is linearly proportional to the expectation value of the angular part of the spin-orbit interaction in the initial state, where the rank of the multipole determines the coefficient of the linear dependence. This spin-orbit sum rule can be an important diagnostic tool for high-energy spectroscopies.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulke, W., “Electron Dynamics by Inelastic X-Ray Scattering” (Oxford University Press, Oxford, 2007).Google Scholar
2. Caciuffo, R., van der Laan, G., Simonelli, L., Vitova, T., Mazzoli, C., Denecke, M. A., and Lander, G. H., Phys. Rev. B 81, 195104 (2010).Google Scholar
3. Kalkowski, G., Kaindl, G., Brewer, W. D., and Krone, W., Phys. Rev. B 35, 2667 (1987).Google Scholar
4. Moore, K. T. and van der Laan, G., Rev. Mod. Phys. 81, 235 (2009).Google Scholar
5. Bradley, J. A., Moore, K. T., van der Laan, G., Bradley, J. P., and Gordon, R. A., Phys. Rev. B 84, 205105 (2011).Google Scholar
6. Cowan, R. D., J. Opt. Soc. Am. 58, 808 (1968).Google Scholar
7. van der Laan, G., Lect. Notes Phys. 697, 143 (2006).Google Scholar
8. Thole, B. T. and van der Laan, G., Phys. Rev. A 38, 1943 (1988).Google Scholar
9. Thole, B. T. and van der Laan, G., Phys. Rev. B 38, 3158 (1988).Google Scholar
10. van der Laan, G., Phys. Rev. Lett. 108, 077401 (2012).Google Scholar
11. Thole, B. T., van der Laan, G., Fuggle, J. C., Sawatzky, G. A., Karnatak, R. C., and Esteva, J. M., Phys. Rev. B 32, 5107 (1985).Google Scholar
12. van der Laan, G. and Thole, B. T., Phys. Rev. B 53, 14458 (1996).Google Scholar
13. van der Laan, G., Moore, K. T., Tobin, J. G., Chung, B.W., Wall, M. A., and Schwartz, A. J., Phys. Rev. Lett. 93, 097401 (2004).Google Scholar