Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T17:28:58.368Z Has data issue: false hasContentIssue false

Systematic Studies of Periodically Nanoporous Si Films for Thermoelectric Applications

Published online by Cambridge University Press:  16 July 2015

Qing Hao
Affiliation:
Aerospace & Mechanical Engineering, University of Arizona, 1130 N Mountain Ave, Tucson, AZ 85721, U.S.A.
Dongchao Xu
Affiliation:
Aerospace & Mechanical Engineering, University of Arizona, 1130 N Mountain Ave, Tucson, AZ 85721, U.S.A.
Hongbo Zhao
Affiliation:
Aerospace & Mechanical Engineering, University of Arizona, 1130 N Mountain Ave, Tucson, AZ 85721, U.S.A.
Get access

Abstract

As the major heat carriers in dielectrics and semiconductors, phonons are strongly scattered by boundaries and interfaces at the nanoscale, which can lead to a significantly reduced lattice thermal conductivity kL. In recent years, such phonon size effects have been used to enhance the thermoelectric performance of various nanostructured materials. With dramatically reduced kL and bulk-like electrical properties, high thermoelectric performance has been demonstrated for nanoporous Si films at room temperature. Despite these encouraging results, however, challenges still exist in the theoretical explanation of the observed low kL values. Existing studies mainly attribute the observed low kL to phononic effects and/or amorphous pore edges. These two effects can be separated when the specific heat of the film can be measured along with kL to provide more insight into the phonon dispersion modification. In this work, both the specific heat and k of a suspended nanoporous Si film is extracted from the 3ω measurements. The result is compared to the reported kL values of various porous Si films. The influence of employed phonon mean free path spectrum on the data analysis is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldsmid, H. J., Thermoelectric Refrigeration (Plenum Press, New York, 1964).CrossRefGoogle Scholar
Yang, J. and Stabler, F. R., J. Electron. Mater. 38, 1245 (2009).CrossRefGoogle Scholar
Kraemer, D., Poudel, B., Feng, H.-P., Caylor, J. C., Yu, B., Yan, X., Ma, Y., Wang, X., Wang, D., Muto, A., McEnaney, K., Chiesa, M., Ren, Z., and Chen, G., Nat. Mater. 10, 532 (2011).CrossRefGoogle Scholar
Song, D. and Chen, G., Appl. Phys. Lett. 84, 687 (2004).CrossRefGoogle Scholar
Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., and Heath, J. R., Nat. Nanotechnol. 5, 718 (2010).CrossRefGoogle Scholar
Tang, J., Wang, H.-T., Lee, D. H., Fardy, M., Huo, Z., Russell, T. P., and Yang, P., Nano Lett. 10, 4279 (2010).CrossRefGoogle Scholar
Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., Serrano, J. R., Phinney, L. M., and El-Kady, I., Nano Lett. 11, 107 (2011).CrossRefGoogle Scholar
Lee, J.-H., Grossman, J. C., Reed, J., and Galli, G., Appl. Phys. Lett. 91, 223110 (2007).CrossRefGoogle Scholar
Lee, J.-H., Galli, G. A., and Grossman, J. C., Nano Lett. 8, 3750 (2008).CrossRefGoogle Scholar
Kim, B., Nguyen, J., Clews, P. J., Reinke, C. M., Goettler, D., Leseman, Z. C., El-Kady, I., and Olsson, R. H., in 2012 IEEE 25th Int. Conf. Micro Electro Mech. Syst. MEMS (2012), pp. 176179.Google Scholar
Hao, Q., Chen, G., and Jeng, M.-S., J. Appl. Phys. 106, 114321 (2009).CrossRefGoogle Scholar
Marconnet, A. M., Kodama, T., Asheghi, M., and Goodson, K. E., Nanoscale Microscale Thermophys. Eng. 16, 199 (2012).CrossRefGoogle Scholar
Dechaumphai, E. and Chen, R., J. Appl. Phys. 111, 073508 (2012).CrossRefGoogle Scholar
Hyldgaard, P. and Mahan, G. D., Phys. Rev. B 56, 10754 (1997).CrossRefGoogle Scholar
Simkin, M. V. and Mahan, G. D., Phys. Rev. Lett. 84, 927 (2000).CrossRefGoogle Scholar
Tamura, S.-i., Tanaka, Y., and Maris, H. J., Phys. Rev. B 60, 2627 (1999).CrossRefGoogle Scholar
Maldovan, M., Phys. Rev. Lett. 110, 025902 (2013).CrossRefGoogle Scholar
He, Y., Donadio, D., Lee, J.-H., Grossman, J. C., and Galli, G., ACS Nano 5, 1839 (2011).CrossRefGoogle Scholar
He, Y. and Galli, G., Phys. Rev. Lett. 108, 215901 (2012).CrossRefGoogle Scholar
Hochbaum, A. I., Chen, R., Delgado, R. D., Liang, W., Garnett, E. C., Najarian, M., Majumdar, A., and Yang, P., Nature 451, 163 (2008).CrossRefGoogle Scholar
Garg, J. and Chen, G., Phys. Rev. B 87, 140302 (2013).CrossRefGoogle Scholar
Lu, L., Yi, W., and Zhang, D. L., Rev. Sci. Instrum. 72, 2996 (2001).CrossRefGoogle Scholar
Shi, L., Appl. Phys. Lett. 92, 206103 (2008).CrossRefGoogle Scholar
Hopkins, P. E. and Phinney, L. M., J. Heat Transf. 131, 043201 (2009).CrossRefGoogle Scholar
Chen, G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, New York, 2005).Google Scholar
Henry, A. S. and Chen, G., J. Comput. Theor. Nanosci. 5, 141 (2008).CrossRefGoogle Scholar
Ward, A. and Broido, D. A., Phys. Rev. B 81, 085205 (2010).CrossRefGoogle Scholar
Hao, Q., Appl. J. Phys. 116, 034305 (2014).CrossRefGoogle Scholar