Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-15T06:05:40.698Z Has data issue: false hasContentIssue false

Systematic Molecular Control of Interfacial Structure in Nanoporous Carbons

Published online by Cambridge University Press:  01 February 2011

Kengqing Jian
Affiliation:
Division of Engineering, Brown University, Providence, RI, Nancy Y.C., Yang, Sandia National Laboratories, Livermore, CA
Gregory P. Crawford
Affiliation:
Division of Engineering, Brown University, Providence, RI, Nancy Y.C., Yang, Sandia National Laboratories, Livermore, CA
Robert H. Hurt
Affiliation:
Division of Engineering, Brown University, Providence, RI, Nancy Y.C., Yang, Sandia National Laboratories, Livermore, CA
Get access

Abstract

The present paper describes a new concept of synthesizing nanoporous carbons that allows control not only of the pore structure, but also of the molecular structure of the internal surfaces. Interfacial molecular control is achieved through the use of discotic liquid crystalline precursors whose molecular orientation on the substrate material is known or can be determined by simple measurements on flat substrate test samples. Here a suite of nanoporous (mesoporous) carbons are synthesized from various porous glass and silica gel templates, and a model is developed to predict the carbon properties from template properties thus allowing systematic template selection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Foley, H. C., Microporous Materials 4, 407433 (1995).Google Scholar
(2) Kyotoni, T., Carbon 38, 269286 (2000).Google Scholar
(3) Hurt, R.H., Krammer, G., Crawford, G.P., Jian, K.Q., Rulison, C., Chem. Mater. 14 45584565 (2002).Google Scholar
(4) Jian, K.Q., Shim, H.S., Daniel, T.D., Bernstein, S., Woodward, C., Pfeffer, M., Steingart, D., Gournay, T., Sachsmann, S., Crawford, G. P., Hurt, R. H., Carbon 41 (11), 20732083 (2003).Google Scholar
(5) Jian, K.Q., Shim, H.S., Schwartzman, A., Crawford, G.P., Hurt, R.H., Adv. Mater. 15 (2), 164 (2003).Google Scholar
(6) Yang, N. Y. C., Jian, K.Q., Klaots, I., Crawford, G.P., Hurt, R. H., Journal of Nanoscience and Nanotechnology 3 (5), 386391 (2003).Google Scholar
(7) Jian, K.Q., et al., in preparation (2003).Google Scholar
(8) Yu, J.S., Yoon, S. B., Chai, G. S., Carbon 14211446 (2001).Google Scholar
(9) Kajii, H., Take, H., Yoshino, K., Synthetic Metals 13151316 (2001).Google Scholar
(10) Lee, J., Kim, J., and Hyeon, T., Chem. Commun. 11381139 (2003).Google Scholar
(11) Ryoo, R., Joo, S. H., Kruk, M., Jaroniec, M., Adv. Mater. 13, 677 (2001).Google Scholar
(12) Kyotani, T., Nagai, T., Inoue, S., and Tomita, A., Chem. Mater. 9, 609615 (1997).Google Scholar
(13) Ma, Z.X., Kyotani, T., Tomita, A., Chem. Commun. 23652366 (2000).Google Scholar
(14) Mirasol, J. R., Cordero, T., Radovic, L.R., Rodriguez, J.J., Chem. Mater. 10, 550558 (1998).Google Scholar
(15) Ray, K., McCreery, R. L., Anal. Chem. 69, 46804687 (1997).Google Scholar